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A B S T R A C T

A framework is introduced for developing a radial reference model that incorporates diverse observations and
techniques for improving the constraints on bulk Earth structure. This study describes new modeling concepts
and reference datasets while features of the reference Earth model REM1D and geological interpretations are
discussed in a companion manuscript. Recent measurements from various techniques have improved in precision
and are broadly consistent, and are summarized as best estimates with uncertainties. We construct a reference
dataset comprising normal-mode eigenfrequencies and quality factors, surface-wave dispersion curves, imped-
ance constraints and travel-time curves from body waves, and astronomic-geodetic observations. Classical radial
reference models do not account for the theoretical effects and observational biases resulting from heterogeneity
in the crust and mantle. We address three issues that account for lateral variations in the modeling of average
elastic, anelastic and density structure. First, current ray coverage of traveling waves is biased towards structure
in the northern hemisphere, leading to faster velocities especially in the lower mantle. Second, horizontal
wavelength of the heterogeneity that a traveling wave encounters is assumed to be much greater than that of the
corresponding normal mode in most ray-theoretical and finite-frequency formulations of wave propagation.
Effects of the full volumetric sensitivity on local eigenfrequencies and phase velocities that are ignored with this
approximation exceed the data uncertainty for both fundamental spheroidal (Rayleigh waves, T ≥ 220 s) and
toroidal modes (Love waves, T ≥ 120 s); waves at these longer periods cannot be modeled solely in terms of
radial variations along the ray path. Third, non-linear effects from the strongly heterogeneous crustal structure
are substantial for shorter-period waves (T ≤ 100 s) and need to be accounted for while deriving radial models.
After accounting for these issues on heterogeneity, rapid convergence for average structure is facilitated by
utilizing a priori constraints from recent literature, analytical sensitivity kernels that account for physical
dispersion, and a flexible parameterization comprising polynomial functions and cubic B-splines. By adopting a
higher order polynomial for density than the elastic structure, artifacts that imply strong inhomogeneity and non-
adiabaticity are avoided in potentially well-mixed regions like the outer core. Derivative properties like the
gradient of bulk modulus with pressure (κʹ = dκ/dp) and the Bullen’s stratification parameter (ηB) are adjusted in
the core to match expectations from mineral physics without deteriorating the fits to reference datasets. A cubic
polynomial parameterization in the lower mantle is adequate to capture possible changes in the gradients of the
modulus ratio (μ/κ) associated with spin transitions in iron-bearing minerals. Radial reference models need to
account for lateral heterogeneity and prior geological information in their construction to accurately represent
the bulk average properties of a heterogeneous Earth.

1. Introduction

A fundamental goal in seismology is to describe the average elastic,
anelastic and density variations with depth in terms of ‘radially strati-
fied’ or ‘spherically symmetric’ one-dimensional (1D) Earth models.
While no location on Earth can be strictly represented by a single radial
reference model, primarily due to the strong lateral heterogeneity in the

crust and uppermost mantle, this mathematical abstraction is never-
theless of critical importance to the geosciences. Average physical
properties represented by radial reference Earth models are used in a
variety of geophysical, geodetic, geochemical and petrological problems
apart from their standard applications in seismology such as calculations
of arrival times (e.g. Doornbos, 1988) and synthetic seismograms (e.g.
Dahlen and Tromp, 1998). In studies of the Earth’s deep interior, radial
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reference models are used for either interpreting or calibrating the
average mantle geotherm (e.g. Stixrude and Lithgow-Bertelloni, 2011),
bulk composition (e.g. Ringwood, 1975; McDonough and Sun, 1995),
grain size evolution (e.g. Dannberg et al., 2017), energy dissipation
mechanisms (e.g. Faul and Jackson, 2005), and the dynamics of mass
and heat transport (e.g. Christensen and Yuen, 1985; Jeanloz and
Knittle, 1989; Tackley et al., 1993). If the absolute properties of a het-
erogeneous Earth are to be mapped for self-consistent interpretations
across the geosciences, an accurate radial model is required as a baseline
for the lateral variations of a few percent that are typically reported in
global and regional studies. Several generations of radial models have
been constructed using datasets sensitive to average Earth structure like
body-wave arrival times (e.g. Jeffreys and Bullen, 1940; Kennett and
Engdahl, 1991; Morelli and Dziewonski, 1993; Kennett et al., 1995) and
normal-mode eigenfrequencies (e.g. Gilbert and Dziewonski, 1975).
Methodological advancements along with the high level of consensus
between radial models led to the development of a preliminary reference
Earth model (PREM - Dziewoński and Anderson, 1981), which combined
travel-time and normal-mode data with Earth’s mass and moment of
inertia to solve simultaneously for elastic, anelastic and density
variations.

Since the development of PREM, there has been a growing agreement
on the need for modeling complexities like anisotropy and attenuation
while constraining robust features like a low-velocity zone in the up-
permost mantle (e.g. Anderson, 1965; Kanamori and Anderson, 1977).
Recent results from seismology (e.g. Shearer and Flanagan, 1999; Gu
et al., 2003; Ekström, 2011), geodesy (e.g. Pavlis et al., 2012) and
mineral physics (e.g. Weidner and Wang, 2000; Wentzcovitch et al.,
2010; Stixrude and Lithgow-Bertelloni, 2012) provide improved con-
straints on parameters ranging from Earth’s mass and moment of inertia
to the average depths and contrasts at seismic discontinuities. Ad-
vancements in mineral physics now afford new equations of state (EoS)
for representing the physical properties of a well-mixed isochemical
material under pressure. Some EoS studies have claimed that the poly-
nomial representation of PREM, (a) produces derivative features in the
outer core that may be physically implausible (e.g. Stacey, 2005), and
(b) lacks the flexibility to detect localized features in the lower mantle
(e.g. Kennett, 2021). For example, a positive curvature of the bulk
modulus with pressure (κʹ́ = d2κ/d2p) in PREM is not compatible with a
uniform phase and composition in the silicate lower mantle or the iron-
rich outer core. A polynomial parameterization has also been questioned
based on the reported values of the Bullen’s stratification parameter ηB,
which represent deviations from a standard adiabatic and homogeneous
region that is in hydrostatic equilibrium (e.g. Bullen, 1963; Dahlen and
Tromp, 1998). For example, it remains debated whether the small yet
mineralogically and dynamically significant deviations of ηB from one
(±0.04) in the lower mantle and outer core are in fact an artifact of
parameterization choices (e.g. Stacey, 1997; Valencia-Cardona et al.,
2017). Kennett (2021) has questioned the flexibility of cubic poly-
nomials in the elastic structure of PREM to recover localized changes in
the relative behavior of shear and bulk modulus (μ/κ), which may afford
signatures of spin transitions in iron-bearing minerals of the lower
mantle (e.g. Badro et al., 2003; Tsuchiya et al., 2006; Wentzcovitch
et al., 2010). There is broad consensus on the need for a new radial
reference Earth model that incorporates latest techniques and observa-
tions while assessing the limitations of parameterization in earlier radial
models. An update to the preliminary information on radial structure
contained in PREMwill improve inferences on bulk Earth properties and
serve as the foundation for a three-dimensional (3D) reference Earth
model (e.g. REM3D, Moulik et al., 2022). However, advancement and
reconciliation of radial reference models has been hampered by the use
of disparate datasets, geographic biases, theoretical approximations and
the lack of a self-consistent methodology.

A plethora of seismological observations afford complementary in-
formation on features of geological interest. For example, some body-

wave studies have proposed localized changes to velocity and density
contrasts in the transition zone (e.g. Shearer and Flanagan, 1999;
Revenaugh and Jordan, 1991b; Estabrook and Kind, 1996; Deuss, 2009)
or inferred directly the mantle composition (e.g. Gaherty et al., 1999).
Normal-mode observations used in PREM provide overlapping sensi-
tivities in this region and can improve estimates of absolute properties
and their gradients. Several widely used models like IASP91 (Kennett
and Engdahl, 1991) and AK135 (Kennett et al., 1995) were optimized to
fit body-wave arrival times for the purposes of earthquake location but
exclude important features such as a low-velocity zone in the shallowest
mantle required by surface-wave observations. Similarly, models based
on long-period datasets like 1066B (Gilbert and Dziewonski, 1975)
predict arrival times of body-wave phases such as S that are slow by as
much as 4 s (Nolet and Moser, 1993). Improved constraints on radial
Earth structure can be gleaned by jointly reconciling multiple datasets
covering a broad spectrum of frequencies (~0.3 mHz – 1 Hz, ~1–3200
s).

Geographic bias is evident in the observations of traveling waves;
summary arrival-time curves of several body-wave phases at teleseismic
distances are biased towards velocities in the northern hemisphere due
to the current distribution of stations (e.g. Dziewonski, 1984; Morelli
and Dziewonski, 1991). The choice of radial (1D) reference model can
introduce discrepancies in arrival times that far exceed the signal from
heterogeneity interpreted in 3D tomographic studies that use body
waves in isolation (e.g. Fukao et al., 2003; Li et al., 2008). Surface waves
traverse large swaths of the oceanic basins and provide better
geographic coverage than body waves. While recent surface-wave
compilations include data from new stations in the Pacific Ocean
Basin (e.g. Ekström, 2011) and temporary deployments such as the
Hawaiian PLUME experiment (e.g. Ma et al., 2014), large areas in the
southern oceans still lack good station coverage. Normal modes, by their
very nature, provide a more even global coverage by integrating the
volumetric effects of heterogeneity. Due to theoretical advancements
that can leverage data from recent, large earthquakes (e.g. Masters et al.,
1983), expanded sets of eigenfrequencies and quality factors are now
available for constraining the average Earth structure (e.g. Resovsky and
Ritzwoller, 1998; Deuss et al., 2013). Accounting for geographic bias in
body- and surface-wave arrival times while reconciling normal-mode
observations can afford an unbiased description of average structure.
However, this critical objective in seismic imaging has not been met by
any radial reference model to date.

Another potential source of discrepancy is the strong crustal het-
erogeneity that cannot be adequately described by a single radial model
(Dziewoński and Anderson, 1981). New crustal models afford detailed
constraints on density and velocity structure that were unavailable
during the construction of PREM (e.g. Bassin et al., 2000; Laske et al.,
2013). Propagation of a specific type of traveling wave (or the corre-
sponding normal mode) can be understood in terms of eigenfunctions
that describe displacements at depth and the eigenfrequency of vibra-
tion (e.g. Dahlen and Tromp, 1998). Several studies have applied linear
corrections to remove the effect of ocean-continent crustal dichotomy on
long-period waveforms (e.g. Woodhouse and Dziewoński, 1984), where
local shifts in eigenfrequency due to crustal structure are calculated
from a global radial model and any regional perturbations to the
displacement eigenfunctions at depth are neglected. However, strong
crustal variations between orogens, platforms, shields, continental
margins, and oceanic basins, can change the shape of eigenfunctions and
affect the local eigenfrequencies in a significantly non-linear fashion
(Montagner and Jobert, 1988). Non-linear effects of the crust have been
shown to strongly influence the modeling of seismic observables like
long-period waveforms (e.g. Kustowski et al., 2007; Lekic et al., 2009).
All radial reference models to date have assumed that the bulk Earth
datasets used in their construction are largely unaffected by crustal
structure.

Inferences regarding the upper mantle, especially using complexities
like anisotropy and attenuation, could be impacted by crustal structure.
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In order to explain the observed discrepancies in the propagation ve-
locities of Love and Rayleigh waves, radial anisotropy with faster shear-
wave velocities in the horizontal rather than the vertical polarization
(vSH > vSV) was proposed as an intrinsic and pervasive feature in the
uppermost mantle (Anderson, 1965). Numerous regional (e.g. Mon-
tagner and Jobert, 1988; Nishimura and Forsyth, 1989) and global
studies (e.g. Ekström and Dziewonski, 1998) have found additional ev-
idence for the robustness of this feature, especially beneath oceanic
basins. Several studies have also reported strong shear attenuation in the
asthenosphere based on the amplitude decay of surface waves (e.g
Anderson and Hart, 1978; Sailor and Dziewonski, 1978; Widmer et al.,
1991; Selby and Woodhouse, 2002; Dalton et al., 2008). Reproducing
the fundamental features of attenuation could help disentangle the
contributions from grain size, temperature, partial melt and composition
(e.g. Faul and Jackson, 2005; Abers et al., 2014), and calibrate mineral
physical parameters in geodynamic simulations (e.g. Dannberg et al.,
2017). However, the impact of strong crustal variations on these global
features in seismological models has not yet been evaluated. For
example, it is typically assumed that the influence of heterogeneity on
the Love-Rayleigh wave discrepancy in phase velocities is weak, can be
accounted for in a linear fashion or get averaged out by combining many
earthquakes and stations (e.g. Anderson and Dziewoński, 1982). Radial
models like PREM assume that the average Love-Rayleigh discrepancy in
velocities can be attributed solely to the radial anisotropic variations.
Quantifying the relative contribution of lateral heterogeneity to the bulk
Earth datasets could help refine the estimates of average anisotropy and
attenuation in the Earth’s upper mantle.

Apart from data and modeling considerations, theoretical formula-
tions for constructing radial models may need to be evaluated due to
heterogeneity in the Earth’s interior. Modeling of traveling (body and
surface) waves as a superposition of fundamental modes and overtones
in the geometrical optics limit consists of several approximations
including, (a) local-eigenfrequency approximation where the sensitivity
kernels to structure at various spherical harmonic degrees (Ks) are
approximated by their degree-zero counterparts (Ks ≃ K0, Jordan,
1978); (b) great-circle ray approximation that treats the surface integral
of the product of two spherical harmonics by a line integral along the
great-circle path between the source and receiver; (c) stationary phase
approximation; (d) approximations of the Wigner-3j symbols (e.g.
Dahlen and Tromp, 1998). These theoretical assumptions are inter-
related and often contingent on the local-eigenfrequency approxima-
tion, which is valid only when the horizontal wavelengths of structural
heterogeneity (s) are much greater than that of the normal mode (nSl,
nTl) with its power concentrated in degrees s≪l. If these asymptotic
limits are satisfied, observed shifts in normal-mode eigenfrequencies (e.
g. Silver and Jordan, 1981; Masters et al., 1982) and lateral variations in
surface-wave dispersion (e.g. Ekström, 2011) can be attributed to local
radial structures rather than the full volumetric heterogeneity. Several
theoretical formulations assume the local-eigenfrequency approxima-
tion to model the effects of heterogeneity on waveforms (e.g. Mochizuki,
1986a; Park, 1987; Romanowicz, 1987; Nolet, 1990) and in the Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) description of surface wave propa-
gation (e.g. Tromp and Dahlen, 1992). Location of a normal mode
multiplet with this approximation is the average of local perturbation in
eigenfrequency over the great-circle path connecting the source and
receiver (Jordan, 1978). The phase velocity of the corresponding surface
wave can be represented as a sum of their fractional dispersion along the
ray path. Validity of the local-eigenfrequency approximation is also
assumed in recent tomographic inversions (e.g. Woodhouse and Dzie-
woński, 1984; Lebedev and van der Hilst, 2008; French and Romano-
wicz, 2014; Moulik and Ekström, 2014) and while accounting for crustal
effects on waveforms (e.g. Kustowski et al., 2007; Lekic et al., 2010).
Formulations that account for coupling between modes within (e.g.
Woodhouse and Dziewoński, 1984) or across overtone branches (e.g. Li
and Tanimoto, 1993) are also contingent on these asymptotic limits in
the frequency band of interest. Since we employ a broad range of

frequencies (~0.3 mHz – 1 Hz) and correct the data for lateral hetero-
geneity, wavelength limits to the local-eigenfrequency approximation
need to be evaluated.

In this study, we formulate new concepts for constructing radial
models that account for the intertwined theoretical and observational
effects of lateral heterogeneity on bulk Earth structure. A radial refer-
ence Earth model (REM1D), in the modern sense, is one that satisfies
several types of geophysical observations and corresponds to the
spherical average of Earth’s 3D heterogeneity (degree-0 term in spher-
ical harmonics). Our approach of utilizing a broad spectrum of data and
accounting for the theoretical complexities of attenuation and anisot-
ropy is an extension of full spectrum tomography used for constructing
3D Earth models (FST; Moulik and Ekström, 2014, 2016). A key ingre-
dient for model construction is a reference dataset that provides best
estimates with associated uncertainties based on available measure-
ments, as is the standard procedure in physics, chemistry, geodesy and
the material sciences (e.g. Birge, 1929; Mohr et al., 2016). Different
types of data employed in the construction of a reference bulk Earth
dataset are described in Section 2. The coupled effects of heterogeneity
on radial structure are discussed in Section 3 while modeling choices to
incorporate prior information in our inversions are summarized in
Section 4. We conclude, in Section 5, with a discussion of the general
implications from the reference datasets on bulk Earth structure. Pri-
mary features of REM1D and geological interpretations are discussed in
a separate manuscript (Moulik and Ekström, 2025, hereafter referred to
as Paper II).

2. Reference bulk Earth data

We reconcile diverse observations that afford sensitivity to radial
structure with the creation of a reference bulk Earth dataset (e.g.
Tables 1–3, Figs. 1–4). The modeling schemes described below account
for crustal effects and, whenever possible, any geographical bias in
sampling mantle heterogeneity. In contrast to the numerical sensitivity
kernels and non-linear optimization schemes employed in previous
studies (e.g. PREM), our formulation leverages first-order perturbation
theory to efficiently model these diverse datasets in terms of degree-
0 perturbations to any 1D or 3D Earth model.

2.1. Astronomic-geodetic data

Earth’s mass and moment of inertia provide constraints on the radial
density variations in the mid and upper mantle with sensitivity
decreasing monotonically from the surface to center of the Earth (CoE).
There is an overall requirement for a mass concentration towards the
CoE because inertia coefficient is less than what is expected for a uni-
form body (0.4). Absolute perturbations in density (δρ) from the starting
reference model (ρ0) are constrained to match the observed mass and
moment of inertia of the Earth. These constraints can be expressed as

M true − M 0 =

∫R

0

4πr2δρ dr (1)

and

ℐtrue − ℐ0 =

∫R

0

4πr2
(
2
3
r2
)

δρ dr, (2)

where M true is the mass, ℐtrue the moment of inertia, and the integral is
taken over the radius r from CoE to the mean Earth radius R. In the rest
of this manuscript, the subscript ‘0’ (e.g. M 0, ℐ0) denotes values from
the starting radial reference model (START, Section 4.2). Constraints on
these parameters from previous studies and the best estimates obtained
here are summarized in Table 1.

The definition of mean Earth radius (R) depends on the geodetic
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Table 1
Reference astronomic-geodetic data. The best estimates and uncertainties of the reference dataset are marked in bold; model predictions are from PREM (Dziewoński
and Anderson, 1981) and AK135 (Kennett et al., 1995). OBANI (Woodhouse, 1988) and MINEOS (Masters et al., 2011) refer to values typically used in these standard
tools for solving normal modes of a radial reference model; WGS84 and its successors EGM96, EGM2008 are geodetic reference systems. Model predictions or
inconsistent, low-precision measurements are denoted by a “†” and excluded from uncertainty estimation. The types of data in italics are variables whose best estimates
and uncertainties are determined from those of other independent variables. Relative uncertainty is undefined if the variable needs to be prescribed as a constant
during model construction (e.g. radius R) or if the source does not specify uncertainty. Subscripts correspond to the method for determining the best estimate and its
uncertainty (Section 2.6).

Data Symbol Units Value ± Uncertainty Relative
uncertainty

Source

Equatorial radius ae m 6,378,137 ± 3† 4.7 × 10− 7 WGS84; Chambat and Valette (2001)

6,378,136.3prf – EGM96, EGM2008

Flattening f – 1/298.257223563† – WGS84

1/299.627† – Hydrostatic prediction (Nakiboglu, 1982,
PREM)

1/298.256415099prf – This study; EGM96; EGM2008

Geocentric gravitational
constanta

GM 109 m3 s− 2 398,600.4418 ± 0.0008† 2.0 × 10− 9 WGS84; Luzum et al. (2011)

398,600.4415 ±

0.0040prf
1.0 × 10− 8

Ries et al. (1992); Chambat and Valette (2001)
This study, EGM96, EGM2008

Radius R m 6,371,012 ± 15 2.4 × 10− 6
Romanowicz and Lambeck (1977)

6,371,001 ± 2 3.1 × 10− 7
Khan (1983)

6,370,994 ± 3 4.7 × 10− 7
Chambat and Valette (2001)

6,371,000bprf
– This study; PREM; Kennett (1998)

Angular velocity Ω 10− 5 rad s− 1 7.292115prf – OBANI/MINEOS; Groten (2000)
This study; WGS84; EGM96; EGM2008

Gravitational constant G 10− 11 m3 kg− 1

s− 2
6.6723† – PREM; OBANI/MINEOS

6.67408 ± 0.00031prf 4.7 × 10− 5 This study; Mohr et al. (2016)

Atmospheric mass M atm 1018 kg 5.1† –
Yoder (1995)

5.1480 ± 0.0003prf 5.8 × 10− 5 This study; Trenberth et al. (2005)

Solid Earth mass M true 1024 kg 5.9742† ± 0.006 –
Romanowicz and Lambeck (1977)

5.9742† ± 0.0036 6.0 × 10− 4
Khan (1983)

5.9736 – Yoder (1995); Dickey (1995)
Cazenave (1995); Kennett (1998)

5.9733 ± 0.0090 1.5 × 10− 3
Chambat and Valette (2001)

5.97218 ± 0.00060 1.0 × 10− 4
Chambat et al. (2010)

5.97236c ± 0.00028dprf 4.7 × 10− 5 This study

5.974† – PREM; OBANI/MINEOS

5.970† – AK135

Inertia coefficient ℐtrue/M trueR2 – 0.330830† ± 0.000015 4.5 × 10− 5
Romanowicz and Lambeck (1977)

0.330729 ± 0.000007 2.1 × 10− 5
Khan (1983)

0.332† – Denis et al. (1997)

0.3307144 – Kennett (1998)

0.330714 ± 0.000008 2.4 × 10− 5
Chambat and Valette (2001)

0.330690 ± 0.000009e 2.6 × 10− 5
Chambat et al. (2010)

0.330714prf ± 0.000024sd 7.3 × 10− 5 This study

0.3308† – PREM

0.33109† – AK135

(continued on next page)
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reference system (e.g. WGS84, EGM2008), expressions used for equiv-
alent radii (e.g. Chambat and Valette, 2001), and on whether conti-
nental volume above the geoid from a digital elevation model is
included (~230 m, e.g. Fan, 1998). For historical reasons, we stick to a
value of R = 6371 km for model construction, which corresponds
roughly to the radius of a sphere with the same volume as the reference
ellipsoid in the EGM2008 geodetic system (Pavlis et al., 2012). Revised
astronomic-geodetic constants influence the calculations of great-circle
distances through the conversion of geographic to geocentric latitudes
(e.g. W) and the distance factor (ΔF) between angular degrees and ki-
lometers (e.g. Seidelmann, 1992). The former conversion provides the
parametric or reduced latitudes on a spherical geodesic of equatorial
radius ae, while the latter conversion uses the spherical law of cosines to
calculate distances that account somewhat for the relative spacing of
latitudes on the original reference ellipsoid. Past seismological studies
have often used a distance factor based on the mean radius (R) instead of
the equatorial radius (ae) leading to systematically smaller distances
between geographic locations (Table 1). This choice can lead to sys-
tematically faster velocities of traveling waves; new constants were
therefore adopted during the construction of the reference dataset of
multi-mode surface wave dispersion (Moulik et al., 2022).

Solid Earth mass (M true) and average density (ρ) are known with
about the same precision as the gravitational constant (G), while
moment of inertia (ℐtrue), which depends on the precessional constant,
is nearly as well-determined. We chose M true to fit the latest estimates of
geocentric gravitational constant GM from EGM2008, atmospheric mass
M atm from Trenberth et al. (2005), and gravitational constant G from
Mohr et al. (2016). Relative standard uncertainty in G has reduced to 4.7
× 10− 5 from 1.5 × 10− 3 in earlier studies (e.g. Chambat and Valette,
2001), affording more precise estimates ofM true and ρ. We adopt a recent
estimate of inertia coefficient (0.714) with an uncertainty (σsd) corre-
sponding to the whole range of recently reported values (Table 1); our
inertia ratio (ℐtrue/M true) is consistent with high-precision estimates
reported by recent studies to within one standard deviation (e.g.
Chambat et al., 2010).

Apart from directly constraining density structure, the new set of
astronomic-geodetic data also influence the modeling of wave propa-
gation. In the context of normal mode formalisms for standing and
traveling waves, these revised estimates are used in calculations of
eigenfrequencies and eigenfunctions (e.g. Woodhouse, 1988; Masters
et al., 2011) and the related sensitivity kernels for inferring internal
structure (e.g. Mochizuki, 1986b). Astronomic-geodetic constants are
used for normalizing physical state variables in wave propagation codes
and the various choices can lead to discrepant estimates of normal-mode
eigenfrequencies. Keeping the radial structure fixed at PREM, eigen-
frequencies predicted by our revised constants differ from those ob-
tained earlier by up to 0.5–4 times the uncertainties in Section 2.2. These
constants most strongly influence the characterization of low-frequency
normal modes (0.3–5.7 mHz), especially the radial (0− 6S0) and funda-
mental modes (0S2− 9), as well as some overtones (e.g. 1S8− 9, 2S10− 13).
The choice of astronomic-geodetic constants therefore critically in-
fluences our inferences of radial structure, especially in the deeper re-
gions of the Earth.

2.2. Normal modes

We first discuss classical approximations and derive new expressions
for spherically-averaged properties that account for physical dispersion
and crustal heterogeneity (Section 2.2.1). Thereafter, we reconcile
normal-mode observations from various techniques for a reference
dataset of eigenfrequencies and quality factors (Section 2.2.2).

2.2.1. Theoretical background
The multiplet eigenfrequencies (ω) and quality factors (Q) of

Rayleigh-wave equivalent spheroidal modes nSl and Love-wave equiv-
alent toroidal modes nTl with overtone number n and angular order l
provide depth-integrated constraints on Earth structure. Substantial
coupling can occur between different multiplets in a realistic Earth that
is rotating and has small asphericities in structure. These additional
effects must be accounted for in order to prevent a biased spherically-

Table 1 (continued )

Data Symbol Units Value ± Uncertainty Relative
uncertainty

Source

Inertia ℐtrue 1037 m2 kg 8.018 ± 0.012 1.5 × 10− 3
Chambat and Valette (2001)

8.017 ± 0.001prf 1.2 × 10− 4 This study

8.021† – PREM

8.023† – AK135

Average density ρ = M true/
4
3

πR3 kg m− 3 5515† – PREM; OBANI/MINEOS

5513.59c ± 0.26dprf 4.7 × 10− 5 This study

Geocentric conversion factor W – 0.993277 – PREM

0.9933056f – This study

Distance factor ΔF km/degree◦ 111.1949 – PREM

111.31948g – This study

a Including the atmosphere.
b Approximation to equivolumetric sphere radius R = ae[1 − f ]1/3 = 6,371,000.07 m.
c Accounts for atmospheric mass M true = M − M atm.
d Calculated with the same relative standard uncertainty as that of G.
e Accounts for mean solid topography from digital elevation models.
f Geographic to geocentric conversion of latitudes (θ) are done with θʹ = atan(W ⋅ tan(θ)).
g Great circle distances in degrees are converted to km using the factor ΔF = 2πae/360/1000 (e.g. Seidelmann, 1992).
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averaged elastic and anelastic structure (e.g. Masters et al., 1983).
Recent studies have measured ω and Q as degree-0 terms of the complex
splitting coefficient (σ00 = c00+ id00), while accounting for the effects of
rotation, ellipticity and lateral heterogeneity (e.g. Resovsky and Ritz-
woller, 1998; Deuss et al., 2013). This procedure is equivalent to eval-
uating the spherically symmetric adjustments to the multiplet
eigenfrequencies (Δω) and quality factors

(
ΔQ− 1) predicted by the

reference model. Following Giardini et al. (1988), the various terms can
be related as

ω = ω0

⎡

⎣1+ c00⋅(4π)−
1
2

⎤

⎦ (3)

and

Q =
ω

2

⎡

⎣α0 + d00⋅ω0(4π)−
1
2

⎤

⎦

, (4)

where α0 = ω0/2Q0 is the imaginary part of frequency ω0 with quality
factor Q0. Assuming small and independent perturbations, the c00 term
that is representative of the elastic and density variations (eq. 3), can be
neglected when anelastic perturbations are being considered (i.e. ω ≃ ω0
in eq. 4). This approximation leads to expressions for degree-0 splitting
coefficients c00 and d00 in terms of the Δω and ΔQ observations as

c00 =
̅̅̅̅̅̅
4π

√
⋅
Δω
ω0

, (5)

and

d00 =
̅̅̅̅̅̅
4π

√

2
⋅ΔQ− 1, (6)

This transformation can be used to relate ω and Q measurements to
the degree-0 components of heterogeneity, which are inverted during
the construction of a radial reference model.

Now, let us consider whether these simple transformations hold true
for a strongly heterogeneous Earth model. The elastic splitting function
FE (e.g Woodhouse et al., 1986; Giardini et al., 1987) of a normal mode
(nSl, nTl) with angular order l represents shifts in eigenfrequencies due to
the lateral heterogeneities of angular order s and azimuthal order t
following

FE(θ,ϕ) =
∑2l

s=0

∑s

t=− s
cstYst(θ,ϕ), (7)

where Yts denotes a fully normalized surface spherical harmonic (Dahlen
and Tromp, 1998). The effect of heterogeneity is modeled using self-
coupled splitting coefficients, denoted by cst, which account for per-
turbations in the i-th model parameter msti , according to

cst =
∫R

0

∑

i
δmst

i K
s
mi dr+

∑

d
δhstd H

s
d, (8)

where subscript i stands for the five elastic parameters (vPH, vPV , vSH, vSV ,
and η) and density (ρ) while subscript d stands for the topography of
three major internal discontinuities (410 km and 650 km discontinuity,
and core-mantle boundary CMB). In the local-eigenfrequency limit,
when the horizontal wavelength of the heterogeneity is much greater
than that of the mode (l≫s), frequency shift is solely a function of the
pole of the great circle joining the source and receiver (Jordan, 1978).
This wavelength requirement is valid only when power of structural
heterogeneity is concentrated in the low degrees (s≪l). In the case of
high-frequency modes with large l, sensitivity kernels are similar for all
degrees s (Ksmi ≃ K0mi ), resulting in splitting functions and related phase
velocity variations that are proxies for radial structure beneath each
point in the Earth. Local eigenfrequency variations are defined as

FlocalE (θ,ϕ) =
δωlocal(θ,ϕ)

ω0
=
∑2l

s

∑s

t=− s
clocalst Yst(θ,ϕ) (9)

where clocalst is related to perturbations in the i-th model parameter msti ,
according to

Table 2
Reference datasets sensitive to the absolute variations and gradients of physical
properties. We list the number of eigenfrequencies (ω), quality factors (Q) and
the number of unique modes for each subset of normal-mode observations.
Eigenfrequencies of fundamental modes include values converted from average
dispersion curves following eq. 12. The spheroidal overtones are sub-divided
based on their sensitivity either to vP variations or core structure. Frequency
range and overtone number (0 - fundamental modes) of the surface-wave
dispersion curves from GDM52 (Ekström, 2011) and Ma et al. (2014) are pro-
vided. Body-wave arrival times of specific phases and branches are obtained
from SP6 at the corresponding components and range of great-circle distances
(Δ). Phases arrivals are associated either with the transverse (T) or vertical
component (V).

Normal modes No. of ω ∣ modes No. of Q ∣ modes

Radial 34 ∣ 16 29 ∣ 10

Spher. Fund. 360 ∣ 91 180 ∣ 67

Spher. Over. (vP) 156 ∣ 50 111 ∣ 50

Spher. Over. (Core) 236 ∣ 46 195 ∣ 46

Spher. Over. (Other) 538 ∣ 64 175 ∣ 64

Tor. Fund. 132 ∣ 92 77 ∣ 57

Tor. Over. 230 ∣ 185 47 ∣ 18

Dispersion curves Overtone number Frequency (mHz)

Love wave (GDM52) 0 4–40

Love wave (Ma et al., 2014) 0 7–30

Rayleigh wave (GDM52) 0 4–40

Rayleigh wave (Ma et al., 2014) 0 5–35

Body-wave phases Weight w (Component) Great-circle Δ

P 5.0 (V) 27◦–125◦

S 5.0 (T) 27◦–125◦

PP 1.5 (V) 53◦–180◦

SS 1.0 (T) 56◦–150◦

PcP 2.0 (V) 26◦–70◦

ScS 2.0 (T) 19◦–65◦

ScP 2.0 (V) 18◦–62◦

SP 1.0 (V) 95◦–128◦

PKIKP 4.0 (V) 118◦–180◦

PKPab 4.0 (V) 156◦–178◦

PKPbc 4.0 (V) 151◦–153◦

PKKPab 1.5 (V) 111◦–122◦

PKKPbc 1.5 (V) 83◦–122◦

SKS 3.0 (V) 91◦–123◦

SKKS 1.5 (V) 65◦–178◦

SKIKP 1.0 (V) 113◦–160◦

SKPbc 1.0 (V) 141◦–148◦

PʹPʹ (PKPPKP) 1.0 (V) 56◦–70◦
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Table 3
Reference dataset of contrasts in physical properties across major internal discontinuities. Our compilation includes contrasts in elastic parameters and density at
transition-zone discontinuities and the inner-core boundary (ICB) from the analysis of body-wave phases (e.g. ScSn), normal modes and receiver functions (RFs). We
define the contrast as %Δx = 100× Δx/xavg , where Δx = |x+ − x− | is the magnitude of difference between parameters at the top (subscript ‘+’) and bottom (subscript
‘–’) of the discontinuity and xavg = [x+ + x− ]/2 is the average. Parameter x can be density ρ, shear modulus μ, bulk modulus κ, shear-wave velocity (vS) and impedance
(ZS), compressional-wave velocity (vP) and impedance (ZP), and bulk-sound velocity (vΦ). Subscripts correspond to the method for determining the best estimate and
its uncertainty (Section 2.6). Values used as the reference dataset and employed in the starting model (Section 4.2) are marked in bold. Estimates frommineral physics
are only provided for comparison (see Paper II) and are not employed while determining the reference seismological dataset.

Discontinuity Values ± Uncertainty Data Source

%ΔvP %ΔvS %Δρ %Δκ %ΔvΦ
§ %ΔZS§ %ΔZP§

410 km
α→β

– 5.4 3.9 – – 9.2 ± 2 – Seismic (ScSn, sScSn) Revenaugh and Jordan (1991b)

– – – – – 6.7 ± 1.1 – Seismic (SdS) Shearer (1996)

7.3† 9.7† 0.9† – – 10.6† 8.2 Seismic (PdP,SdS) Shearer and Flanagan (1999)

– – – – – 7.8 ± 0.6 5.3 ± 0.5 Seismic (SdS) Chambers et al. (2005)

4.8± 0.1 5.1 ± 0.4 4.8 ± 0.2 – – 9.9 ± 0.6 9.6 ± 0.3† Seismic (PdP, SdS, RFs) Lawrence and Shearer (2006)

– 4.0 ± 2.4 3.4 ± 1.4 – – 7.4 ± 1.0 – Seismic (SdS) Huang et al. (2019)

2.5–4.8 3.4–5.4 3.9–5.0 – –
8.3prf ±
1.6sd

7.5prf ±
2.2sd

Best estimates This study

2.5 3.4 5.0 9.0 2.0 8.3 7.5 Model predictions PREM

– – 5.1 20.2 7.6 – –
ab initio (Mg2SiO4,~ 1500
K, 16.3 GPa)

Yu et al. (2008); Wentzcovitch
et al. (2010)

– 7.9 ± 0.9 2.9 – –
10.8 ±

0.9§
–

Min. phy (pyrolite, 3 % Al,
1473 K)

Gaherty et al. (1999); Weidner
and Wang (2000)

5.6 6.8 3.3 – – 10.1§ 8.9§ Min. phy (pyrolite, 1600 K) Stixrude and Lithgow-Bertelloni
(2011)

650 km

γ → pv + pc

– 8.5 6.1 – – 14.4 + 2 – Seismic (ScSn, sScSn) Revenaugh and Jordan (1991b)

– – – – – 9.9 ± 1.5 – Seismic (SdS) Shearer (1996)

2.5 6.1 6.2 – – 12.3 8.7 Seismic (PdP) Estabrook and Kind (1996)

2 4.8 5.2 5.5 0.16 10 7.2 Seismic (PdP, SdS) Shearer and Flanagan (1999)

0.7 +

0.8†
4.2 ± 0.3† 4.4 ± 0.7† 8.6 + 1 5.1 ± 1.5 Seismic (PdP, SdS, RFs) Lawrence and Shearer (2006)

– 4.1 ± 1.7 4.5 ± 0.6 – – 8.6 ± 1.2 – Seismic (SdS) Huang et al. (2019)

0.7–2.5 4.8–8.5 5.2–6.2 – –
10prf ±
1.4sd

7.2prf ±
2.1sd

Best estimates This study

4.6 6.5 9.3 16.0 3.4 15.8 13.9 Model predictions PREM

– – 7.9 7.7 ±

1
− 0.1 ±

0.48
– –

ab initio (Mg2SiO4, 1900 K
and 23.2 GPa)

Yu et al. (2007); Wentzcovitch
et al. (2010)

5.4± 4.0 6.3 ± 6.0 6.2 ± 0.4 – –
11.7 ±

10.0§
11.6 ±

4.4§
Mineralogy (piclogite,
1500 K) Vacher et al. (1998)

3.3 5.5 5.4 – – 10.9§ 8.7§ Min. phy (pyrolite, 1600 K)
Stixrude and Lithgow-Bertelloni
(2011)

ΔvS (km/
s)

Δρ (g/
cm3)

ICB

– – <1.1–1.2 – – – – Seismic(PKiKP/PcP) Tkalčić et al. (2009); Waszek and
Deuss (2015)

–
2.82 ±

0.32
0.52 ±

0.24
– – – –

Seismic(PKiKP/PcP,
PKiKP/P) Koper and Dombrovskaya (2005)

– 2–3 0.6–0.9 – – – – Seismic(PKiKP/PcP) Cao and Romanowicz (2004)

– >2.5 <1 – – – – Seismic(PKiKP/PcP) Shearer and Masters (1990)

– 3.45 ±

0.1 ~0.55 – – – – Seismic(normal modes) Shearer and Masters (1990)

(continued on next page)
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clocalst =

∫R

0

∑

i
δmst

i K
0
mi dr+

∑

d

δhstd H
0
d . (10)

Here, structural heterogeneity at all degrees s are mapped to the
corresponding splitting coefficient through degree-0 kernels (K0mi , H

0
d ;

Supplementary Figs. S1 and S2), representing sensitivity to local radial
structure while ignoring full volumetric effects (in contrast to Ksmi andH

s
d

in eqs. 7 and 8). In Section 3.2, we evaluate the validity limits of this
local-eigenfrequency approximation based on our current knowledge of
the power of structural heterogeneity.

Even when the local-eigenfrequency approximation is valid, it can be
demonstrated that mode eigenfrequencies and related degree-0 splitting
coefficients cannot be directly attributed to radial variations due to the
intertwined effects of crustal structure and that further corrections are
needed (Section 3.3). In order to be consistent with our treatment of
surface-wave dispersion (Section 2.3), we express the degree-0 splitting
coefficient as

c00 =
̅̅̅̅̅̅
4π

√

ω0
⋅
[
Δωobs − Δωnon-linear

crust
]
. (11)

where subscript obs denotes observations and the latter term is the non-
linear contribution from crustal heterogeneity. Phase-velocity pertur-
bation at a fixed frequency ω is related to the eigenfrequency pertur-
bation at a fixed wavenumber k by
(δc
c

)

ω
=
c
U

(δω
ω

)

k
, (12)

where c and U are the phase and group velocity of the normal mode,
respectively (Dahlen and Tromp, 1998). Consequently, non-linear
crustal contributions to eigenfrequencies can be expressed as

Δωnon-linear
crust =

U0
c0

Δcnon-linearcrust ω0. (13)

Non-linear crustal effects on the average phase-velocity perturbation
of a traveling surface wave are

Δcnon-linearcrust =

〈
ccrust(θ,ϕ) − c0

c0

〉

, (14)

where 〈⋅〉 denotes the spherical average of a 2-dimensional map of
phase-velocity perturbations evaluated at a given latitude θ and longi-
tude ϕ. Here, ccrust is the local phase velocity calculated with a radial
reference model where a crustal model (e.g. Bassin et al., 2000; Laske
et al., 2013) is overlain on top of average mantle and core structure
(Section 3.3). In practice, non-linear phase-velocity corrections (eq. 14)
are stored roughly at evenly-spaced frequencies between 0.04 and 4
mHz and evaluated thereafter for any mode eigenfrequency (ω0) using
cubic B-spline interpolation. A similar non-linear crustal correction is
not applied to the quality-factor measurements (eq. 6) as this non-linear
effect is small relative to the uncertainty in available data (Section 3.3).

The imaginary parts of the self-coupled splitting coefficients are
related to perturbations in bulk (qκ = Q− 1

κ ) and shear attenuation (qμ =

Q− 1
μ ), as

d00 =
∫R

0

[
μδq00μ K

0
μ + κδq00κ K

0
κ

]
dr, (15)

where K0μ and K0κ are the kernels for degree-0 perturbations to shear (μ)
and bulk modulus (κ), respectively, while accounting for the effects of
physical dispersion in the reference model. The degree-0 elastic splitting
coefficient c00 is related to the degree-0 perturbations in the i-th model
parameter

(
m00
i
)
, according to

c00 =
∫R

0

∑6

i=1
δm00

i K
0
mi dr+

2
πln
[ ω
2π

]
d00. (16)

The kernel expressions (Supplementary Figs. S1 and S2) are obtained
from Mochizuki (1986b) and Dahlen and Tromp (1998), and we recal-
culate the sensitivities to degree-0 perturbations when the reference
model is updated in our iterative modeling scheme (Section 4.3). The
attenuation term (d00) denotes the contribution from physical dispersion
based on an absorption band model with constant quality factors (Qκ,
Qμ) across the entire seismic frequency band (~1–3200 s; e.g. Kanamori
and Anderson, 1977).

2.2.2. Data compilation
We compile a large dataset of normal modes available from the

literature (Figs. 1–3, Table 2, Supplementary Figs. S3–S19) obtained
using five techniques: single station analysis (Smith and Masters, 1989;
Roult et al., 1990), iterative spectral fitting (ISF, e.g. Giardini et al.,
1987, 1988; Li et al., 1991; Resovsky and Ritzwoller, 1998), singlet
stripping (SS, e.g. Buland et al., 1979; Ritzwoller et al., 1986), multiplet
stripping (MS, e.g. Gilbert and Dziewonski, 1975), and regionalized
multiplet stripping (RMS, e.g. Widmer-Schnidrig, 2002). Single station
methods involve histogram analyses of peak-frequency measurements
from single recordings and therefore need to be corrected for aspherical
structure. The ISF technique iteratively fits a set of observed normal-
mode spectra but is non-linear and requires accurate descriptions of
the earthquake source. Other processing techniques utilize simplifying
assumptions to linearize the determination of eigenfrequencies and
quality factors. Singlet stripping regards the dominant asphericities
sensed by the target normal-mode multiplet as axisymmetric, a restric-
tive assumption that may be applicable only at small angular orders.
Multiplet stripping linearly estimates resonance functions from multiple
records ignoring aspherical structure and typically requires similar fi-
delity of source mechanisms as the ISF technique. These techniques can
provide an unbiased estimate only if the ray paths sample the Earth
evenly or their relative sampling is accounted for during the fitting
procedure. Regionalized multiplet stripping was introduced for over-
tones with high angular order where other linearized techniques often
fail to disentangle the contributions from fundamental modes. This
technique accounts more explicitly for the geographic coverage with sets
of seismograms that share a common great circle, utilizing the asymp-
totic relations of the local-eigenfrequency approximation (Jordan,
1978).

A compilation of normal-mode eigenfrequencies and quality factor

Table 3 (continued )

Discontinuity Values ± Uncertainty Data Source

– – 0.82 ±

0.18
– – – – Seismic(normal modes)

Masters and Gubbins (2003)

– 2.5–3.5 0.5–0.9 – – – – Best estimates This study

– 3.5 0.6 – – – – Model predictions PREM

† Excluded in best estimates because of inconsistencies with other studies, possibly due to tradeoffs.
§ For small contrasts in properties, %ΔZS = %ΔvS + %Δρ, %ΔZP = %ΔvP + %Δρ, and %ΔvΦ = [%Δκ − %Δρ]/2, unless explicitly provided by a study.
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observations made prior to the year 2001 was obtained from a website
(Laske, 2001) hosted at the Scripps Institution of Oceanography (here-
after Scripps). This compilation extended the measurements used in the
development of PREM with average global values of fundamental-mode
surface-wave attenuation (Durek et al., 1993; Durek, 1994),
fundamental-mode and overtone data from the analysis of normal mode
spectra using the standing wave approach (Smith and Masters, 1989;
Widmer et al., 1991; He and Tromp, 1996) as well as the unpublished
updates to these data. Recent occurrence of several large earthquakes,
expansion of the global seismic network along with theoretical and
computational advancements have led to new measurements of normal
modes (e.g. Widmer et al., 1992; Resovsky and Pestana, 2003; Häfner
and Widmer-Schnidrig, 2013; Deuss et al., 2013; Schneider and Deuss,
2020). Recent measurements account for the coupling between sphe-
roidal modes and are therefore likely to bias less the results on
spherically-averaged structure (e.g. Masters et al., 1983). We augment
the dataset compiled at Scripps with revised estimates from Masters
(2020, personal communication) and published studies (Deuss et al.,
2011, 2013). Singlet stripping measurements of the radial (0− 6S0) and
fundamental modes (0S2− 6, 0T2− 6) from the deep (d = 647 km) Bolivia
earthquake in 1994 (Masters and Widmer, 1995) are updated with
improved estimates from the 2004 Sumatra (Andaman) earthquake (MW
9.3). Additionally, new measurements are included from applications of

the multiplet stripping (Widmer, 1991) and regionalized multiplet
stripping techniques (Widmer-Schnidrig, 2002). The eigenfrequency
estimates based on the multiplet stripping technique are biased low but
generally agree with other techniques within the 2-σ uncertainty bounds
(e.g. Fig. 2). Available measurements are broadly consistent across
various normal-mode studies and can be reconciled with independent
surface-wave techniques to determine our best estimates and un-
certainties. For example, normal-mode eigenfrequencies of fundamental
modes measured using standing wave approaches lie within the 95 %
confidence interval of surface-wave dispersion measurements (Section
2.3).

We test the consistency between various subsets of data and use a
preferred subset for the reference dataset construction. Inconsistencies
between measurements can be attributed to techniques, quality of data
or the approximations employed. A few inconsistent observations are
detected by performing joint inversions with all data types and tracking
anomalously large misfits (χ2 > 1500) e.g. quality factor of the vP-sen-
sitive mode 11S25 (Deuss et al., 2013). Quality factors of fundamental
spheroidal modes measured using the traveling (surface) wave approach
(e.g. Durek et al., 1993) are lower than the measurements that utilize the
standing wave (normal mode) approach (e.g. Widmer et al., 1991).
Durek and Ekström (1997) suggested that the normal mode approach
can bias attenuation measurements towards lower values due to effects

Fig. 1. Observed eigenfrequencies and quality factors of radial modes (nS0, where n is overtone number). The reference data and uncertainties (in black) are
estimated based on the procedure outlined in Section 2.6. Symbols denote the various types of normal-mode techniques (e.g. ISF, MS, SS) discussed in Section 2.2. For
clarity, eigenfrequencies are plotted relative to the values predicted by PREM.
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of noise on a long time series while Masters and Laske (1997) pointed to
the problem of selecting appropriate windowing for long-period surface
waves as a reason to favor the normal mode measurements. There is
limited consensus on the kind of measurement that provides a more
robust representation of Earth’s attenuation structure (e.g. Roult and
Clévédé, 2000; Romanowicz and Mitchell, 2007). Our reference dataset
transitions smoothly from values consistent with normal mode estimates
at low frequencies to surface wave estimates at higher frequencies (l ≥
32, T < 250 s). Reference data typically corresponds to the mean of
available quality factors and standard uncertainty at low frequencies,
while a preferred value and relative uncertainty is used at high fre-
quencies (μprf ± σrel, Section 2.6). This choice results in robust fits to the
measurements of fundamental-mode Rayleigh waves at periods shorter
than 250 s, and is consistent with the approach used for constructing the
radial attenuation model QL6 (Durek and Ekström, 1996). Several

inconsistencies in the data and uncertainties have also been reported by
other studies. The uncertainty estimates in the catalog from Scripps are
anomalously low for the dataset measured by Y. Um (Resovsky et al.,
2005). We modify the reported uncertainty estimates to account for the
wide variety in the quality of measurements; based on our experiments,
these choices do not influence strongly the primary features of average
Earth structure (Paper II).

2.3. Surface-wave dispersion curves

Global dispersion curves of fundamental-mode surface waves pro-
vide constraints on average elastic properties and density in the upper
mantle (Supplementary Fig. S2). In the overlapping periods of vibrations
(4–8 mHz, Fig. 2, Table 2), estimates of average dispersion from
Rayleigh-wave studies are in agreement (±2σ) with independent

Fig. 2. Observed eigenfrequencies and quality factors of Rayleigh-wave equivalent spheroidal fundamental modes (0Sl, where l is angular order). The reference data
and uncertainties (in black) are estimated based on the procedure outlined in Section 2.6. Inset figures zoom into the values for long-period vibrations at small
angular orders. At shorter periods (T < 150 s), estimates of average surface wave dispersion are converted to eigenfrequencies for Rayleigh waves (l > 58). A small
catalog of best estimates from Scripps based on data till the year 2000 is plotted for comparison wherever available (light blue curves). For clarity, eigenfrequencies
are plotted relative to the values predicted by PREM. Similar plots for spheroidal overtones are provided as Supplementary Figs. S3–S12.
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constraints on the eigenfrequencies of spheroidal fundamental modes
(Smith and Masters, 1989; Roult et al., 1990). Consistency across
surface-wave studies from the 1990’s tends to deteriorate at shorter
periods corresponding to fundamental modes of angular order (l) greater
than ~150–200 (e.g. Laske and Masters, 1996; Trampert and Wood-
house, 1995). Such discrepancies are likely due to past limitations in
geographic coverage and theoretical approximations on the azimuthal
variations in phase velocity. Recent surface-wave studies account for the
azimuthal variations in phase slowness (Ekström, 2011; Ma et al., 2014),
potentially reducing tradeoffs between average anisotropic velocity and
azimuthal anisotropy in the upper mantle. We choose degree-0 terms of
isotropic phase-velocity maps from recent dispersion models as con-
straints in our modeling as they provide direct sensitivity to average
Earth structure (Fig. 4). Average phase velocities in the range of 25–250
s are constrained well by the extensive dataset employed in recent

studies; GDM52 was constructed using the minor- and major-arc com-
ponents of the phase-anomaly data obtained from 3330 shallow (h > 50
km) earthquakes from 2000 to 2009. A recent global surface-wave study
by Ma et al. (2014), hereafter referred to as Scripps14, employed a
clustering technique with minor-arc waveforms from all MW > 5.5
earthquakes that occurred between 1976 and 2008.

While the data and methodology are somewhat distinct between
GDM52 and Scripps14, average phase-velocity perturbations are highly
consistent and do not differ by more than 0.15 % for both Love and
Rayleigh waves (Fig. 4a). The relative uncertainties are substantially
lower for Love waves (< 10 %) than for Rayleigh waves at periods
shorter than 100 s, potentially due to choices such as the stricter quality
control and exclusion of azimuthal variations in phase-velocity in-
versions. In periods that overlap with normal-mode techniques
(~150–250 s), agreement deteriorates but GDM52 values still lie within

Fig. 3. Observed eigenfrequencies and quality factors of Love-wave equivalent toroidal fundamental modes (0Tl, where l is angular order). The reference data and
uncertainties (in black) are estimated based on the procedure outlined in Section 2.6. Inset figures zoom into the values for long-period vibrations at small angular
orders. At shorter periods (T < 150 s), estimates of average surface wave dispersion are converted to eigenfrequencies for Love waves (l > 60). A small catalog of best
estimates from Scripps based on data till the year 2000 is plotted for comparison wherever available (light blue curves). For clarity, eigenfrequencies are plotted
relative to the values predicted by PREM. Similar plots for toroidal overtones are provided as Supplementary Figs. S13–S19.
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the 2-σ uncertainty bounds of mode data. Due to the high level of con-
sistency (Fig. 4), we use the average dispersion data from GDM52

(
μprf
)

as our best estimate and a standard deviation (σsd) that spans the various
available estimates. When only a single estimate of average phase ve-
locity is available (e.g. 25 s Love wave from GDM52), we determine
uncertainty based on the nearest available (i.e. in terms of frequency)
estimate of relative uncertainty in measurements (σrel).

Since GDM52 was parameterized in terms of slowness perturbations
(dp/p), we derive explicitly the phase-velocity maps (dc/c) relative to
PREM before incorporating the spherical averages in our inversions.
This procedure leads to estimates of average dispersion that are slightly
different than those in the original study (cf. Fig. 15 in Ekström, 2011).
The average dispersion can be expressed as
〈

δc
c0

(θ,ϕ)
〉

= Δclinear1D +Δcnon-linearcrust =
δc
c0

+Δcnon-linearcrust , (17)

where the first term on the right (δc/c0) represents the linear contribu-
tion from the degree-0 perturbation to the radial reference model while
the second term corresponds to the non-linear contributions from crustal
heterogeneity (eq. 14). In order to linearize the forward problem in
terms of mantle structure, we express the GDM52 dispersion curves as a
set of degree-0 splitting coefficients corrected for crustal effects. Several
studies use PREM as the reference model to measure perturbations in
phase velocity (eqs. 14 and 17); we therefore convert the values to
perturbations from our starting model. Using eqs. 5 and 12, the corre-
sponding splitting coefficient c00 can be expressed as

c00 =
̅̅̅̅̅̅
4π

√ U0
c0

[
cPREM
c0

(

1+
〈

δc
cPREM

〉

obs
−

c0
cPREM

)

− Δcnon-linearcrust

]

, (18)

where subscript obs denotes the observed phase anomaly while c0 and
U0 are the phase and group velocities from the starting reference model,
respectively.

The conversion of Rayleigh and Love-wave dispersion curves to
degree-0 splitting coefficients of equivalent spheroidal and toroidal
modes allows us to adopt a linearized scheme for inverting radial
structure using eq. 16. In the interest of computational efficiency when
calculating the non-linear contributions (eq. 14), dispersion data are
inverted only at a set of discrete reference periods - 25, 27, 30, 32, 35,
40, 45, 50, 60, 75, 100, 125, 150, 200 and 250 s. We use a weighting
function for the dispersion curves that is inversely proportional to fre-
quency of the surface wave to compensate for the high overall sensitivity
of phase-velocity perturbations to the shallowest mantle and crustal
structure.

2.4. Summary body-wave arrivals

The choice of a reference model can introduce discrepancies in
arrival times of body waves that can exceed the signal from heteroge-
neity typically interpreted in tomographic studies of the Earth’s interior.
These issues arise largely due to choices on data weighting during model
construction and the related discrepancies in the sampling of hetero-
geneity. Revised sets of constraints are therefore needed so that REM1D
can accurately predict the average rather than a geographically biased
onset of body-wave phases. Large sets of arrival times for various phases
are collected by the International Seismological Centre (ISC), which
could ideally be used directly for inversions of radial structure. A natural
way to include such constraints is to reprocess the arrival times for
summary time-distance curves of the major mantle and core phases. The
reference model SP6 (Morelli and Dziewonski, 1993) was constructed to
represent the global average of isotropic shear and compressional ve-
locities while accounting for large residuals (e.g. Jeffreys, 1932) as well
as the geographic bias from an uneven source-station distribution (e.g.
Morelli and Dziewonski, 1991). Summary arrival times of major body-
wave phases are largely consistent across techniques and have not
required an update to their original estimates to date (e.g. Morelli and
Dziewonski, 1993; Kennett, 2020).

Arrival-time curves of various mantle and core phases sampled at 1◦

intervals are used as constraints in our inversions (Table 2). We incor-
porate SP6 predictions in lieu of raw arrival times since their modeling
philosophy emphasized construction of a spherical average rather than
simply fitting the available data; arrival-time curves were constructed
from well-distributed shallow (h < 50 km) earthquakes and corrected
for lateral heterogeneity in the lower mantle (Dziewonski, 1984). In-
clusion of SP6 arrival times as constraints circumvents the issues of
baseline corrections that are well known in some early models (e.g.
Jeffreys and Bullen, 1940). We evaluate measures of fit for each phase
branch by comparing the SP6-predicted arrival times

(
tSP6
)
with the

predictions from a model (t). For example, fit to a phase (p) and branch
(b) is expressed as

Fig. 4. Reference data of average phase-velocity perturbations (dc/c) for Love
(in blue) and Rayleigh (in yellow) waves between 25 and 250 s. Reference
dataset of normal mode eigenfrequencies (Figs. 2 and 3) and those used in the
construction of PREM (‘+’ symbols) are converted to phase-velocity perturba-
tions (dc/c, eq. 12). Values from the global dispersion model GDM52 (Ekström,
2011) and the model of Ma et al. (2014) are highly consistent. The reference
dispersion data (in black) are estimated with the GDM52 measurements as the
preferred mean and uncertainties dictated based on the scatter in data. In the
overlapping frequencies of vibration (4–8 mHz), estimates of average dispersion
and mode eigenfrequencies are in agreement (±1σ) demonstrating the consis-
tency between traveling- and standing-wave techniques. All values are calcu-
lated relative to the phase velocities obtained from PREM.
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χ2pb =
∑Δ2

Δ=Δ1

[
tpb(Δ) − tSP6pb (Δ)

]2
, (19)

where Δ=[Δ1,Δ2] is the range of great-circle distances where it is
observed (Table 2). The values of Δ considered encompass almost the
entire range used in the construction of earlier body-wave velocity
models (Morelli and Dziewonski, 1993; Kennett et al., 1995). We chose a
weighted sum of the fits to various phases as our measure of overall fit to
the arrival-time curves; the weights (w) are chosen based on the ex-
pected amplitude of arrivals and coda of the preceding phases (Kennett
et al., 1995). The overall criterion of fit to the arrival-time curves (χ2tt)
can be expressed as

χ2tt =
∑

p

∑

b
wpbχ2pb (20)

where the summation is done over all phases being considered (Table 2).
Since radial reference models are typically used in body-wave studies by
adding the necessary corrections for asphericities, we exclude contri-
butions from lateral variations in the crust (e.g. Kustowski, 2007) and
Earth’s ellipticity (e.g. Dziewonski and Gilbert, 1976) in our compari-
sons. The phases S, SS and ScS are calculated on the transverse
component (SH-motion) while other phases are calculated on the ver-
tical component (P-SV motion), in order to account for radial anisotropy
in the shallowest mantle. Predictions of arrival times from the aniso-
tropic PREM model show deviations of ~2 s for teleseismic S and SS
waves when the effects from vSH > vSV anisotropy in the shallowest
mantle are not considered. While diffracted waves (Pdiff , Sdiff) pass
through substantial lateral heterogeneity and may not be adequately
modeled with a simple ray representation (e.g. Kennett et al., 1995),
they provide important constraints on the average structure in the
lowermost mantle and are included in our inversions whenever the
raypath can be traced (Woodhouse, 1981). The crustal and upper-mantle
P and S arrivals out to 26◦ are excluded as there is considerable regional
variation in their arrival times (Kennett et al., 1995). Several triplica-
tions from transition-zone discontinuities that arrive at distances up to
30◦ are also excluded from our analysis.

In order to incorporate the SP6 travel-time predictions as constraints,
we parameterize the model in terms of variations to the five elastic
parameters in a radially anisotropic medium and calculate the sensi-
tivities numerically. The elastic parameters in the mantle and core are
perturbed by 0.01–0.05 units (< ⋅ > in Fig. 5) and rays are traced though
the suite of perturbed anisotropic models using a formulation modified
from Woodhouse (1981). The perturbations in arrival times relative to
the reference model, sampled at every 1◦ great-circle distance, are then
assimilated into a sensitivity matrix used in the joint inversions. This
procedure requires a scheme for automatic identification of branches in
arrival-time curves derived from a large suite of perturbed radial
models. A simple branch-classification scheme based on a prescribed
range of distances is prone to branch misidentification. A clear distinc-
tion of mantle phases at short teleseismic distances (Δ ≤ 30◦) is not
straightforward to automate due to the triplications from transition-
zone discontinuities. While we limit the number of spurious arrivals
by permitting only small perturbations in the elastic moduli (Fig. 5), the
intersection of branches can differ based on the details of radial struc-
ture. We start by tracing rays to the farthest stations and track the
variation in slowness (s) and dΔ/ds with great-circle distance (Δ). The
slowness variations of the propagating rays are used to identify the main
branch of mantle phases (e.g. P, S, SS) and dΔ/ds variations are used to
identify the prograde and retrograde branches of core phases (e.g. PKP,
PKKP).

2.5. Discontinuity phases

The radial extent of the mantle transition zone and contrasts in
physical properties across its internal discontinuities are constrained

primarily using body waves. A discontinuity shallower than the 670 km
in PREM has been reported in global stacks of SS precursors with
average depth values ranging from ~653–660 km globally (e.g. Shearer
and Masters, 1992; Shearer, 1993; Flanagan and Shearer, 1998; Deuss,
2009). We impose the average depth of discontinuities in the transition
zone at 410 and 650 km, consistent with global compilations of SS
precursors (Shearer, 1990; Gu et al., 2003). A discontinuity depth
shallower than 670 km is required to match average time residuals of SS
precursors, whose bounce points are biased towards structure within
and around the Pacific Ocean basin. The bounce points of SS precursors
have retained this geographic bias since the late 1990’s across different
techniques and compilations (Supplementary Fig. S20) due to the cur-
rent source-station distribution. Most studies report strong depressions
(exceeding 15 km) in the 650-km discontinuity beneath the slab-like
anomalies in the circum-Pacific regions and substantially weaker
depth variations (~1 km) in the mid-Pacific region (e.g. Shearer and
Masters, 1992; Flanagan and Shearer, 1998; Gu and Dziewonski, 2002;
Kustowski et al., 2008; Houser et al., 2008; Moulik and Ekström, 2014).
After accounting for this geographic bias and the tradeoffs between
velocity and topography of discontinuities using full-spectrum tomog-
raphy, the spherically-averaged depths of both 410- and 650-km dis-
continuities do not deviate by more than 0.17 km in 3D tomographic
models (S362ANI+M; Moulik and Ekström, 2014). Mineral physical
calculations with a pyrolitic composition also indicate that the discon-
tinuity depth may be shallower than 670 km in PREM (Table 3),
although uncertainties of phase diagrams (Weidner and Wang, 2000)
and strong dependence on temperature and compositional variations (e.
g Cammarano et al., 2005) limit higher precision. For example, the
shallower 650-km discontinuity in our models corresponds to a pressure
difference with PREM of less than 0.19 GPa (Paper II), which is within
the uncertainty bounds arising from temperature and composition
during the dissociation reaction of ringwoodite into bridgmanite and
ferropericlase (e.g. Ishii et al., 2019; Katsura, 2022).

Transition zone discontinuities at 410 and 650 km have velocity and
density contrasts (%Δx, Table 3) that are much less certain than their
topography due to methodological approximations (e.g. incoherent
stacking, discrepant frequency bands, focusing effects) and relatedly the
greater scatter in amplitude observations than in travel time data (e.g.
Shearer, 1991, 1993; Bai and Ritsema, 2013). Nevertheless, several
studies have attempted to estimate either the contrast in impedance or
velocity and density across the transition zone discontinuities using SS
and PP precursors (e.g. Shearer and Flanagan, 1999; Shearer, 1996;
Estabrook and Kind, 1996; Chambers et al., 2005), receiver functions (e.
g. Lawrence and Shearer, 2006), and ScS reverberations (e.g. Revenaugh
and Jordan, 1991b). Based on available constraints and the procedure
described below, we determine best estimates of these parameters in
Table 3 for various applications.

Precursors to the PP and SS phases afford some of the best constraints
on bulk impedance contrasts due to the spatial averaging inherent in the
stacking procedure, finite width of their Fresnel zones and good
reflection-point coverage away from the geographically-limited sources
and receivers. Amplitudes of these underside reflections from disconti-
nuities (SdS, PdP where d is 410 or 650) depend on epicentral distance
and contrast in impedance (ZP, ZS), the product of density and seismic
velocity. There is a tradeoff between contrasts in density (Δρ) and ve-
locity (ΔvP, ΔvS) that fit the amplitudes of SS precursors equally well in
global stacks (e.g. Shearer and Flanagan, 1999). The impedance con-
trasts needed to fit these data also correspond roughly to estimates from
ScS reverberations at normal incidence (e.g. Revenaugh and Jordan,
1991b). Our best estimates and uncertainty for impedance contrasts
cover the whole range of consistent measurements to within the 95 %
confidence interval; uniform distribution with a range of values is pro-
vided instead for the contrasts in velocities and density due to the
tradeoffs. For example, the velocity (and density) contrast at the 410-km
discontinuity reported by Shearer and Flanagan (1999) are excluded
from our best estimates as they are anomalously large (and small)
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compared to other studies even though the associated impedance
contrast is consistent ( ± 2σ) with other estimates. Recent seismological
studies agree that relative amplitude ratios of S410S/SS and P410P/PP
imply P and S wave impedances (ZP, ZS) that are consistent with PREM
at the 95 % confidence interval. The estimates of S wave impedance
obtained from relative amplitudes of SS precursors are broadly in
agreement with those from SH-polarized mantle reverberations such as
ScS and sScS (e.g. Revenaugh and Jordan, 1991a, 1991b). We adopt the
impedance contrasts from PREM as our best estimate for the 410-km
discontinuity and specify an uncertainty that spans the full range of
reported measurements.

Most studies agree that the impedance contrasts in PREM at the 650-
km discontinuity are anomalously strong by a factor of ~1.5–2, resulting
in an relative amplitude ratio of S650S/SS that is ~2–3 times stronger
than is observed globally (e.g. Shearer, 1991; Shearer and Flanagan,
1999; Deuss, 2009). The absence of P650P in long-period stacks, partic-
ularly at epicentral distances ~120◦ where there is less interference
from other seismic phases, has been explained by a considerably smaller
step change in density and velocity than PREM (e.g. Estabrook and Kind,
1996; Lawrence and Shearer, 2006; Deuss, 2009). Due to the lower S
wave impedance, AK135 is widely used in lieu of PREM while analyzing
SS precursor waveforms. We use the preferred value of shear impedance
contrast (%ΔZS) from Shearer and Flanagan (1999) as our best estimate
as it falls roughly within the 95 % confidence interval of other studies
(Table 3). Overall, our best estimates are consistent with earlier results
from several long-period reflected and converted phases, and imply P
and S wave impedance contrasts at the 410-km discontinuity that are
~0.8–1.1 times the contrasts at the 650-km discontinuity (e.g. Shearer,
1991).

2.6. Uncertainty estimation

Since several estimates with or without reported uncertainties are
available for nearly every type of measurement (m), we create a refer-
ence dataset (m=μ ± σ) for constructing reference Earth models and data
validation in other applications (e.g. Tables 1–3). Our best estimate of
the mean (μ) is based on several considerations: (1) value from a

preferred study
(

μprf
)
if it either supersedes the earlier estimate (e.g. G

from Mohr et al. (2016)) or is the only available constraint; (2) the
weighted mean of the measurements (μwei =

∑
μi/σ2i /

∑
1/σ2i ), when

the data have relative uncertainties (σ/μ) that are similar (within

±10− 5) given modeling approximations (e.g. normal mode eigen-
frequencies at periods > 300 s) or when the reported uncertainties are
based on similar techniques (e.g. bootstrapping); (3) mean of available
measurements (μavg), if estimates of uncertainty are neither available
nor reasonable for one or more of the measurements (e.g. quality factors
of normal modes). When a normal distribution for a parameter cannot be
justified based on modeling considerations (e.g. due to tradeoffs in
Section 2.5), we provide our best estimate as a range of acceptable
values (m=[mmin,mmax], Table 3).

The uncertainty assigned to our best estimates (σ) is determined
according to: (1) reported uncertainty of a preferred study

(
σprf
)
, ac-

counting for the propagation of uncertainties from independent vari-
ables (e.g. M true from GM ); (2) a standard deviation (σsd), which spans
the range of available estimates when best estimate is a preferred value
(

μprf
)
but multiple estimates need to be accounted for (e.g. inertia co-

efficient); (3) standard error of the mean (σsem), when best estimate is
the mean (μavg); (4) weighted uncertainty of all reported uncertainties
(

σwei =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/
∑
1/σ2i

√ )
, either when best estimate is the weighted mean

(μwei) or when all available measurements have very similar means (i.e.
σsem≪σwei); (5) for a single estimate with no reported uncertainty, it is
prescribed to have the same relative uncertainty as that of the nearest

available datum in frequency and measurement type (σrel). Subscripts
denoting the procedure above are available as metadata and used
throughout this manuscript (e.g. Table 1).

3. Coupled effects of heterogeneity and bulk structure

We account for the coupled nature of lateral heterogeneity and bulk
(average) structure in the modeling and interpretation of reference
datasets (Section 2). Outstanding questions persist regarding the extents
to which observational (Section 3.1) and theoretical limitations
(Sections 3.2 and 3.3) are influenced by this modeling choice.

3.1. Structural insights from data and accounting for geographic bias

Geographic bias in body waves towards the structure sampled by
continental stations is clearly evident in earlier inferences on the up-
permost and lowermost mantle. For example, arrival times predicted by
the two widely used radial models PREM and AK135 differ by up to ~5 s
for teleseismic S and SKKSwaves (Fig. 6). The early arrivals of S waves at
short distances (Δ ≤ 80◦) with AK135 is due to vS structure that differs
from PREM by up to 2.75 % in the uppermost mantle and below the
transition zone, potentially due to biased sampling of continental re-
gions. Geographic bias also influences the average properties of deeper
regions in the Earth’s interior. PREM and AK135 predict arrival times of
waves reflected from the CMB (ScS) or diffracted around the core (Pdiff,
Sdiff) that differ by ~1–2 s (Fig. 6). While almost all AK135 arrival times
are in broad agreement with SP6 (±0.5 s), phases that bottom in the Dʹ́

region are an exception. Such discrepancies may be attributed to the
biased sampling of the fast northern hemisphere in the lowermost
mantle (e.g. Morelli and Dziewonski, 1993). Body-wave phases that
graze the outer core (e.g. SKKS) or traverse the entire core (e.g. PʹPʹ) are
systematically slower (~5–6 s) in AK135 than PREM due to stronger
gradients and slower velocities in the outermost outer core broadly in
agreement with SP6. Revised constraints from SP6 (Section 2.4) are
employed in our inversions to account for the global average rather than
geographically biased onsets of body-wave phases.

Global dispersion of fundamental-mode surface waves provide a
more uniform constraint on the elastic structure of the uppermost
mantle. Multiple techniques for measuring dispersion can be reconciled
and afford a consistent picture of the anisotropic structure in the upper
mantle (Moulik et al., 2022). Direct interpretation of average dispersion
in terms of radial structure should be avoided due to theoretical con-
siderations (Sections 3.2 and 3.3). After accounting for the effects of
heterogeneity on the reference datasets, broad implications on radial
structure become evident. PREM underestimates substantially the phase
velocities of Rayleigh waves at periods shorter than 200 s (Fig. 4),
potentially due to a bias towards the slower continental regions in
earlier studies. Since Love waves at periods shorter than 125 s were not
used in the construction of PREM, estimates of radial anisotropy in the
shallowest mantle were poorly constrained and could only be parame-
terized as a monotonic function with depth in the upper 220 km of the
mantle. Rayleigh-Love discrepancies in phase velocities (Fig. 4) and
corresponding eigenfrequencies (Figs. 2 and 3) differ most substantially
from PREM predictions at intermediate periods (~40–50 s). This
observation indicates that radial anisotropy peaks at a depth deeper than
the Mohorivičić discontinuity (hereafter Moho) in PREM (24.4 km). All
recent studies concur that PREM is inconsistent with eigenfrequencies of
fundamental toroidal (Love waves) and spheroidal (Rayleigh waves)
modes at periods longer than ~250 s (0Sl, 0Tl where l < 58), suggesting
revision of structure in the deep mantle (depth ≥ 300 km).

Joint consideration of normal-mode eigenfrequencies and quality
factors also inform expected (an)elastic deviations from earlier radial
models. Our new reference dataset is broadly consistent with the limited
quality factors employed in the construction of PREM. Newer normal-
mode and surface-wave measurements were the motivation for other
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attenuation studies (Widmer et al., 1991; Durek and Ekström, 1996);
recent normal-mode observations span a wider range of frequencies and
overtone branches (Figs. 1–3; Supplementary Figs. S3–S19). Inverse
quality factors of most surface-wave equivalent toroidal (0Tl, l ≥ 20) and
spheroidal fundamental modes (0Sl, l ≥ 46) are higher than those pre-
dicted by PREM (1000⋅ΔQ− 1 = 0.1–1.3), suggesting stronger shear
attenuation in the shallowest regions of the Earth. While trends in data
afford broad implications for bulk Earth structure, disentangling the
various effects necessitates joint inversions (Section 4).

3.2. Limits to the local-eigenfrequency approximation

Our reference normal-mode and surface-wave observations span a
broad frequency range (0.3–40 mHz) that could transcend the validity
limits of the local-eigenfrequency approximation. As discussed in Sec-
tion 2.2.1, asymptotic limits that justify direct sensitivity of surface
waves to local radial structure depend on the power spectrum of lateral
heterogeneity in relation to the wavelength of an equivalent normal
mode. We employ the crustal model CRUST2.0 (Bassin et al., 2000) and
the mantle tomographic model S362ANI+M (Moulik and Ekström,
2014) to describe the heterogeneity spectrum. Our goal here is to restrict
attention to the long-wavelength models of Earth’s three-dimensional
heterogeneity that are known with better precision and fidelity. If the
approximation is found invalid with long-wavelength variations, any
increase in the power of finer-scale structure reported using new seismic
deployments is bound to restrict the validity even further. We evaluate
the validity of this approximation by quantifying the extent to which
sensitivity kernels to structure at various spherical harmonic degrees
(Ks) can be approximated by their degree-zero counterparts (Ks ≃ K0;
Jordan, 1978).

First, it is clear that sensitivity kernels to structures at different
wavelengths (or degree s) can vary dramatically for the low order (l),
low-frequency normal modes. For example, lowest-frequency modes
such as 0S2 and 0T2 have degree-0 and 2 sensitivities to vS structure that
are opposite in sign within the lower mantle (Fig. 7a). Predictions of
frequency shifts of these modes from the elastic splitting function are
therefore anti-correlated with those inferred from the local-

eigenfrequency approximation (Fig. 8, Columns 1 and 2). Most tomo-
graphic models agree with S362ANI+M on the antipodal low-vS struc-
tures beneath the Pacific Ocean and Africa that would be expressed as
negative shifts in eigenfrequencies for modes 0S2− 8 with degree-0 ker-
nels and the local-eigenfrequency approximation. However, observed
frequency shifts of 0S2 in the spectra of long-period seismograms are
positive in these antipodal regions (e.g. Häfner and Widmer-Schnidrig,
2013; Deuss et al., 2013), consistent with low-vS structures sampled
by degree-2 sensitivity kernels. Positive (and negative) frequency shifts
of up to 0.4 % in lowest-frequency modes therefore correspond to a
decrease (and increase) in vS, in contrast to the underlying assumptions
in earlier studies (e.g. Silver and Jordan, 1981; Masters et al., 1982). It is
worth noting that the magnitude of frequency shifts also constrains the
positively buoyant region (dlnρ ≃±0.5 %) that is anti-correlated with vS
variations in the bottom ~500 km of the mantle (Moulik and Ekström,
2016).

Second, validity of the local-eigenfrequency approximation can be
quantified based on a ‘local threshold’ parameter, which we define as

ϰthres =
ω0

σ

∫

Ω

⃒
⃒FE(θ,ϕ) − FlocalE

(
θ ,ϕ)

⃒
⃒dΩ, (21)

where ω0 is multiplet eigenfrequency predicted by the radial reference
model, FE is the even-degree elastic splitting function (eq. 7), FlocalE are
values from the local eigenfrequency approximation (eq. 9) and dΩ is
the differential surface area on the unit sphere. Note that the values are
normalized by the uncertainty (σ) in mode eigenfrequency (Section 2.2).
For this synthetic measure, both FE and FlocalE are calculated till the
maximum degree s = 2 l (e.g. eq. 9). A local threshold value ϰthres > 1
corresponds to a mean discrepancy in eigenfrequency between the
theoretical assumptions that exceeds the measurement uncertainty and
thereby influences significantly the residual variance in tomographic
inversions.

Fig. 8 shows the values of FE, FlocalE and ϰthres for several spheroidal
and toroidal modes. Local thresholds are substantial (ϰthres ≥ 20) for the
modes 0S2− 3 and 0T2− 3 and the local-eigenfrequency approximation is
clearly invalid at the longest periods of vibration. At the shortest periods
(T∼ 25 s), ϰthres is zero to within numerical precision, demonstrating the

Fig. 5. Radial parameterization used in the construction of reference Earth models. Perturbations to our starting model are expressed in terms of basis functions (eq.
22). The model perturbations consist of combinations of 7 evenly-spaced cubic B-splines between 24.4 and 410 km and polynomials up to order n = 4 elsewhere in
the Earth (Appendix A). The quartic polynomial term (n = 4) is employed only for density in the outer core to avoid artifacts in derivative properties (Section 4.1.4).
Basis functions are colored according to various types: quadratic, cubic and quartic functions in red, cubic B-splines in yellow, and values at the top and bottom of a
region in blue. A layered parameterization with boxcar functions is used for bulk attenuation (Qκ) in various regions of the mantle and core. The perturbations for
calculating numerical sensitivity kernels in Section 4.4, specified in < ⋅ >, varies based on the physical parameter under consideration.
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applicability of JWKB and local-eigenfrequency approximations for
analyzing these surface-wave observations (e.g. as equivalent modes
0S234 and 0T254). Local threshold value ϰthres = 1 is crossed at an inter-
mediate period of around 120 s for Love (0T76) and 220 s for Rayleigh
waves (0S38, Fig. 7). Toroidal modes are more sensitive than spheroidal
modes to the shallower crustal structure that has stronger power at
shorter wavelengths (high s) compared to the underlying mantle model
(degree 18). Asymptotic limits for normal modes (l≫s) and the local-
eigenfrequency approximation (Ks ≃ K0) are strictly valid at higher
frequencies (and angular orders) in toroidal (Love waves) than in
spheroidal modes (Rayleigh waves). Substantial geographic variations
are evident with discrepancies between FE and FlocalE that cancel out
along certain paths (e.g. Hawaii to South Pole for 0S2, Fig. 8); ϰthres
therefore represents the upper bound on the discrepancy that a traveling
wave could accrue globally. Our non-linear formulations for correcting
eigenfrequency (eq. 11) or phase velocity (eq. 18) for crustal effects,
which also assume the validity of this approximation, are strictly valid
only for fundamental-mode Love waves below 120 s and Rayleigh waves
below 220 s. Note that these are optimistic and upper bounds on the
validity limits since only the long-wavelength variations in the crust and
mantle are being considered.

3.3. Non-linear effects of crustal structure

At frequencies where the local-eigenfrequency approximation is
valid, phase of a propagating wave may be attributed solely to the local
radial structure that the wave encounters along the ray path. If the

relationship between local phase velocity and lateral structural varia-
tions is sufficiently linear, it can be modeled in terms of perturbations to
the average global model using first-order perturbation theory (e.g
Woodhouse and Girnius, 1982; Dahlen and Tromp, 1998) instead of
solving for exact mode catalogs beneath every point (e.g. Boschi and
Ekström, 2002; Nettles and Dziewonski, 2008). We perform several
experiments to assess whether the strong crustal variations could in-
fluence the average dispersion in a significantly non-linear fashion.
Fig. 9 shows the local phase-velocity perturbations of 35 s and 60 s Love
and Rayleigh waves for PREM overlain by three-dimensional crustal
structure from CRUST2.0 (Bassin et al., 2000). The phase-velocity maps
exhibit a clear correlation with crustal variations; fast phase velocities
are associated with the thin, fast oceanic regions while slow velocities
are correlated with thick, slow continental crust in the Andes and Ti-
betan plateau. The phase velocities of 35 s Love waves show stronger
deviations from PREM velocities (down to − 12 %) than Rayleigh waves
due to their stronger sensitivity to crustal structure. Global deviations of
Love wave phase velocities decrease two-fold from 0.34 % at 35 s to
0.15 % at 60 s period due to the reduced sensitivity to crustal structure at
longer periods (Supplementary Fig. S2).

Fig. 10 summarizes the average deviations in phase velocities from
PREM across all available frequencies and wave types. These values are
obtained from the spherical average of phase velocity maps (i.e.< ⋅ > in
Fig. 9). Contributions of crustal structure to Love-wave dispersion curves
increase monotonically with frequency and are up to 1.5 times the
observed signal at periods shorter than 40 s (Fig. 10a). The influence of
water depth in oceanic basins coupled with the deeper sensitivity of

Fig. 6. Arrival-time curves of various mantle and core body phases. Arrival times are calculated from anisotropic PREM at every 1◦ distance and colored according to
values relative to the isotropic model AK135. Red colors denote slower velocities (greater arrival times) and blue colors denote faster velocities (smaller arrival times)
than AK135. The source is a surface-focus earthquake located at the equator (0◦, 0◦) and no ellipticity correction is applied. A modified version of an anisotropic ray
tracer (Section 2.4; Woodhouse, 1981) is employed; the phases S, SS and ScS are measured on the transverse component and others on the vertical compo-
nent (Table 2).
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Rayleigh waves leads to substantial crustal contributions even at inter-
mediate periods longer than 40 s. Crustal contribution to the average
phase velocity of 60 s Rayleigh waves (0.54 %) is, in fact, three-fold
greater than those at 35 s (0.17 %). Due to the strong agreement on
average dispersion (Section 2.3), crustal contributions are often ~2–5
times the estimated uncertainties and are significant above the 99 %
confidence level. Overall, the crustal contributions to globally averaged
phase-velocity perturbations are substantial and often comparable to the
observed deviations from the PREM dispersion curves. Both CRUST2.0
and the finer-resolution CRUST1.0 (Laske et al., 2013) show average
perturbations that are similar to within ±0.05 % for both Love and
Rayleigh waves between 4 and 40 mHz. Non-linear contributions to
reference datasets and radial structure are largely independent of the
crustal model and depend primarily on the large-scale variations in
Moho depth that is relatively well constrained with diverse datasets. Our
results extend the application of nonlinear crustal corrections (e.g.
Kustowski et al., 2007; Lekic et al., 2009) to the direct modeling of radial
structure. In case of the available quality factor observations, the non-
linear contributions from a crustal layer with uniform shear attenua-
tion (Qμ = 300) and variable Moho depth from CRUST2.0 are typically
smaller than the uncertainties in available data (Fig. 10b). Crustal
contribution to quality factors may be substantial for Love waves shorter
than 50 s but no systematic measurements of global attenuation have
been made at these short periods to date.

Observations of average dispersion can lead to divergent in-
terpretations of radial structure based on whether crustal contributions
are considered. Classical approaches based on first-order normal-mode
perturbation theory suggest that the reported deviations in phase ve-
locity or eigenfrequency can be attributed directly and linearly to
changes required in PREM. Linear contributions from the crust can be
readily evaluated as they are only sensitive to differences between PREM
and the average structure of CRUST2.0 (Fig. 10a). Linear crustal con-
tributions are expected to show a roughly monotonic variation since
displacements and resulting sensitivities in the crust become progres-
sively stronger with frequency, which are inconsistent with the refer-
ence dataset. Considering the non-linear effects of the crust has a
perceptible and often dramatic effect on the inferences of radial struc-
ture. For example, linear assumptions might suggest that high velocities
for short period Love waves (≥ 30 mHz) is indicative of a crust that is
thinner on average than in PREM (Ekström, 2011). However, non-linear
crustal contributions are comparable or even stronger than the observed
signal at these periods, which suggests that no major changes to the
Moho depth in PREM are required (Fig. 11). Similar comparisons for
Rayleigh waves suggest that the bulk (> 50 %) of the average phase
velocity perturbations at long periods (50–100 s) can be attributed to
non-linear effects from the crust. Corrected eigenfrequency perturba-
tions indicate that the average vSV (and vSH) structure in the shallowest
mantle is likely faster (and slower) than PREM (Fig. 11). We therefore
account for the non-linear crustal contribution to degree-0 terms of
phase velocity maps and normal-mode eigenfrequencies (eqs. 11 and 18)
before inversions are performed for radial structure.

4. Influence of inverse modeling choices

In previous sections, we outlined forward modeling concepts that
account for the effects of lateral heterogeneity on reference bulk Earth
datasets. Construction of a radial model involves the inverse modeling of
datasets for a description of average properties. We now explore the
concepts of parameterization, starting model, regularization and sensi-
tivity kernels, which are optimized for rapid convergence and bench-
marked against classical approaches.

4.1. Prior information in the parameterization

A radial model ⊕ can be expressed as a linear combination of

analytical basis functions that vary within 10 principal regions of the
Earth (Fig. 5). The starting radial reference model can be written as

⊕0(r) =
∑

h

cmkh Bh(r), (22)

where cmkh corresponds to the coefficient for the h-th function from the
basis set and the k-th seismological parametermk (e.g. density, velocity).
A polynomial parameterization was adopted by the early tomographic
studies of radial Earth structure (Dziewoński et al., 1975) and later used
in constructing PREM based on suggestions by the Standard Earth Model
Committee of the I.U.G.G (e.g. Hales et al., 1974). In the sections below,
we discuss and justify changes to classical parameterization schemes
based on our experiments and the current geophysical knowledge.

4.1.1. Finer details in the upper mantle
A detailed parameterization in the upper mantle is informed by

recent studies that demonstrate the improved resolution of elastic (e.g.
Kustowski et al., 2008) and anelastic structure (e.g. Romanowicz, 1995;
Selby and Woodhouse, 2000; Dalton et al., 2008) owing to new and
expanded datasets. While we adopt a polynomial basis in most principal
regions, our upper mantle (24.4–410 km) consists of a linear polynomial
and 7 evenly spaced cubic B-splines (Appendix A). Since the 220-km
discontinuity appears not to have a global extent (e.g. Gu et al.,
2001), we have chosen a smooth and more detailed parameterization in
the shallowest 410 km of the mantle (Fig. 5). The cubic B-splines provide
a basis set with compact support like boxcar or multi-layer parameter-
izations (e.g. Widmer et al., 1991; Durek and Ekström, 1996), but are
more advantageous since they have continuous first and second
derivatives.

While high bulk attenuation in the asthenosphere (80–220 km depth)
was reported by Durek and Ekström (1995), we have chosen to adopt a
parameterization that permits only constant bulk attenuation
throughout the upper mantle (24.4–410 km) as additional complexity
with cubic B-splines is presently unjustified. Due to anelastic dispersion,
a discontinuity in bulk attenuation at 220 km depth in QL6 leads to a
minor discontinuity for compressional waves at periods other than the
reference period (1 s), a complexity that has not yet been observed
globally in recorded waveforms. An evaluation of high bulk attenuation
restricted to the asthenosphere (e.g. Durek and Ekström, 1996) that does
not manifest as a discontinuity for elastic parameters is beyond the scope
of this study. The 220-km discontinuity is therefore summarily excluded
from all physical parameters in our radial models.

4.1.2. Revised mantle discontinuities
Several adjustments are made to the parametrization in the mantle

transition zone (410–650 km) based on recent observations. We remove
a second-order discontinuity defined in PREM at 600 km depth, in
agreement with the choice made by several studies (e.g. Kennett et al.,
1995; Morelli and Dziewonski, 1993; Kustowski et al., 2008). Based on
mineral physics, it is known that phase transformations in the transition
zone are not univariant and can occur over a range of depths. The olivine
to wadsleyite phase transformation at 410 km depth is about 10 km thick
(Akaogi et al., 1989; Katsura and Ito, 1989) while the garnet-to-
perovskite transformation at 650 km is about 50 km thick (Akaogi
et al., 2002; Hirose, 2002). Our parameterization does not permit phase
boundaries over a range of depths based on purely seismological con-
siderations; precursor body-wave phases reflected from such boundaries
cannot be traced through our models and their amplitudes detected
above the noise level if the impedance contrasts extend over a region
exceeding ~5 km in thickness.

Our parametrization in the lower mantle follows closely the poly-
nomial coefficients adopted in PREM. We retain the second-order
discontinuity at 771 km in the lower mantle, which corresponds
roughly to the depth where transitions of all upper mantle minerals
(olivine, enstatite, and garnet) to their high-pressure polymorphs
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(perovskite, ferropericlase, and calcium perovskite) are completed (e.g.
Stixrude and Lithgow-Bertelloni, 2011). The steep velocity gradients in
this region can therefore be considered an extension of the mantle
transition zone. Another second-order discontinuity at a depth of 2741
km is adopted from PREM based on earlier definitions of a Dʹ́ layer
(Bullen, 1949), which corresponds roughly to the bridgmanite to post-
perovskite phase transition (e.g. Murakami et al., 2004).

4.1.3. Allowing detection of iron spin transitions
Recent tomographic studies with strong sensitivity to the mid-mantle

agree on the weakness of heterogeneity in the central lower mantle
(CLM, 771–2741 km; e.g. Ritsema et al., 2011; Moulik and Ekström,
2014). Radial variations in the CLM region follow smooth velocity
gradients, consistent with a close-to-adiabatic thermal gradient and self-
compression of the relatively stable bridgmanite over a large range of
pressures. The CLM region corresponds to conditions where a transition
in the electronic spin state of iron in bridgmanite and ferropericlase is
expected to occur based on ab initio calculations and laboratory exper-
iments though the size and radial (or pressure) extent of this phase
transition remain debated (e.g. Badro et al., 2003; Tsuchiya et al., 2006;
Wentzcovitch et al., 2010; Badro, 2014). Localized features in absolute
properties (vP, vS and density) that are diagnostic of spin transitions can
be permitted though parameterization choices e.g. adding cubic B-
spines and higher-order polynomials or by adopting a pair of poly-
nomials split across a second-order discontinuity. However, incorpo-
rating such complexity in our parameterization cannot be currently
justified based on three considerations. First, the a posteriori fits to

reference datasets of body waves and normal modes that are sensitive to
the CLM region are excellent with the cubic polynomials for elastic
structure (Paper II). Second, splitting the CLM region a priori in our in-
versions would involve prescribing the depth of a second-order discon-
tinuity that cannot be justified based on the trends (dt/dΔ) in global
datasets like arrival times (t) of mantle waves (e.g. P, S) that bottom in
this region (Δ = 52◦–68◦). Third, emerging mineralogical studies report
complicating factors such as temperature, composition and partitioning
of iron between bridgmanite and ferropericlase, which may lead to a
more suppressed and broadened signature of iron spin transitions in the
real Earth than estimated in the laboratory for single mineral phases (e.
g. Speziale et al., 2005; Caracas et al., 2010; Irifune et al., 2010).

A derivative property of interest for detecting spin transitions is the
gradient of modulus ratio (μ/κ) as a function of scaled pressure (p/κ),
since a linear relationship is expected in regions with uniform phase and
composition (e.g. Falzone and Stacey, 1980; Burakovsky et al., 2004;
Kennett, 2021). Spin crossovers in the lower mantle are expected to
manifest as a smooth (second-order) phase transition that modifies the
pattern with distinct linear μ/κ segments on either side of the transition
region. Kennett (2021) has interpreted the mild change of μ/κ gradients
(1300–1750 km depth) in the body-wave model AK135 that is param-
eterized with linear gradients as a signature of the iron spin transition.
Additionally, this study claimed that the null detection of a μ/κ signature
in PREM was due to the inherent limitations of data and the polynomial
parameterization employed in its construction. Fig. 12 demonstrates
that adopting a cubic polynomial parameterization does not preclude
localized μ/κ changes in the CLM region. Minor reductions (~1–2 %) to

Fig. 7. Nature of sensitivity kernels and related limits for the local-eigenfrequency approximation. (a) Sensitivity kernels of the normal modes 0S2, 0S234, 0T2 and
0T254 to the degree s = 0 (solid) and s = 2 (dashed) variations in density (ρ, yellow) and Voigt-averaged shear velocity (vS, black). Depth of the 410-km and 650-km
discontinuities and the core-mantle boundary (CMB) are indicated by grey horizontal lines. For 0S2, and 0T2, horizontal bars beneath the velocity kernels show from
top to bottom, the mode’s sensitivity to topographic perturbations of the 410 and 650-km discontinuities and the CMB (Ks410, Ks650 & KsCMB). Note that the kernels are
calculated using PREM, are in units of μHz and correspond to variations in physical parameters (δmi/mi) or topography (δh/a) of 1 %, where a=6371 km and that
each graph is scaled independently. (b) Discrepancies in structural sensitivity owing to the local eigenfrequency approximation exceeds measurement uncertainty
when ϰthres > 1 on average (blue curves) and in more than 50 % of the Earth’s surface area (red curves). This is the case for fundamental spheroidal modes at periods
above 220 s (e.g. 0Sl, l ≤ 38) and fundamental toroidal modes above 120 s (e.g. 0Tl, l ≤ 76).
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the polynomial coefficients for velocity structure in PREM are adequate
to capture the μ/κ variations in AK135 and a parameterization in terms
of linear gradients or layers is not required. Although cubic polynomials
are employed in our vP, vS and density variations, relative differences in
their gradients permit localized derivative features to emerge that are
similar in amplitude to those interpreted in past studies as signatures of
spin transitions (e.g. Kennett, 2021). Feasibility for the detection of spin
transitions in radial Earth models with reference datasets is discussed
further in Section 4.4 of Paper II.

4.1.4. Avoiding artifacts in derivative properties
Properties derived from radial reference models such as the Bullen’s

stratification parameter ηB are strongly sensitive to deviations from
adiabicity and homogeneity. Fig. 13 summarizes our experiments with
polynomials of various orders using the elastic structure from SP6 and
PREM. If the density gradients follow the Adams-Williamson equation
(
dρ/dr = − ρ2g/κ

)
, the predicted density profile will have associated ηB

values of 1 throughout the outer core. However, full complexity of such
a density profile needs to be captured by our parameterization since
artifacts can be wrongly attributed to changes in phase, temperature or
composition. It is readily apparent that a polynomial of at least order

n+1 may be needed for density if the coefficient of order n in vP (or κ)
structure in a fluid region (vS = 0) is sufficiently large; this choice allows
the gradient of density (dρ/dr) to also have a maximum order of n and
thereby satisfy the Adams-Williamson equation to greater precision.
Both SP6 and PREM have a sufficiently large gradient and curvature of
vP in the outer core such that the predicted density profiles cannot be
adequately fitted with cubic polynomials (Fig. 13a). The small yet
mineralogically and dynamically significant deviations of ηB from one in
the PREM outer core (3 %; ηB = 1 ± 0.03) are artifacts from using
polynomials of the same order for both elastic and density structure. In
order to reduce the artifact from parameterization to within a range of
uncertainty expected from current mineral physical knowledge
(∣ηB − 1∣ < 0.005), we add a quartic polynomial (n = 4) in the outer
core and a cubic polynomial (n = 3) in the inner core to the density
parameterization of PREM. Previous uncertainty bounds on the ηB
parameter (i.e. 2 %; Masters, 1979) based on resolving power theory
(Backus and Gilbert, 1968, 1970) are biased high since they did not
include the new reference datasets or account for the artifacts of a
polynomial parameterization.

It is worth noting that a polynomial parameterization does not
automatically introduce spurious, inflexible and physically implausible

Fig. 8. Limits of the local eigenfrequency approximation for traveling waves using crustal model CRUST2.0 and mantle model S362ANI+M accounting for the
topography at the 410- and 650-km discontinuities. Each row corresponds to a normal mode with its eigenfrequency provided within [⋅] in mHz. Predicted splitting
function (Column 1, FE, eq. 7) accounts for the finite-frequency effects of even-degree lateral heterogeneity on propagating waves while local eigenfrequencies
(Column 2, FlocalE , eq. 9) assume ray-theoretical sensitivity solely to local radial structure. Also provided are the absolute differences (Column 3) between the two
approaches (in μHz). Local eigenfrequency approximation is less valid when local threshold ϰthres ≥ 1 (Column 4) on average and in more than 50 % of the Earth’s
surface area (e.g. 0S2, 0T2). Note that these calculations ignore the effects of Earth’s hydrostatic ellipticity; such contributions will not influence the difference in
synthetics discussed here.
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structure as has been suggested by some studies (e.g. Stacey, 2005;
Kennett, 2021). Polynomial terms in our inversion are informed by
mineral physics and reference datasets ultimately dictate whether the
final radial reference model conforms to such expectations. There is no
apparent need to invoke interpretative assumptions on the specific EoS
formulation (e.g. Birch, 1947; Vinet et al., 1987; Stacey, 1995) or esti-
mates of molar mass, pressure and gravity in the outer core (e.g. Irving
et al., 2018). On the issue of parameterization, the elastic and density
variations in the outer core predicted by these EoS formulations are
decidedly smooth and can be fitted to within 0.01 % using polynomials
up to order 4 or 5. Polynomial parameterization is also justified based on
the principle of parsimony that prefers the model with least complexity
that can fit the reference datasets (e.g. Constable et al., 1987; Malin-
verno, 2002; Charléty et al., 2013). Models based on linear gradients and
layers (e.g. AK135) afford neither uniformly better fits to seismological
datasets nor more flexible constraints on derivative properties (e.g. ηB,
gradients in μ/κ) than models constructed with a few polynomial
functions.

4.2. Prior information in the starting model

In the following sections, we discuss and justify features of our
starting radial model (START, Fig. 14) based on our experiments and
insights from the literature.

4.2.1. Starting constraints on the absolute variations
Due to historical reasons and owing to the limited direct sensitivity

from the datasets in this study, crustal elastic parameters, density and
Moho depth from PREM are retained. However, shear attenuation in the
crust is modified (Qμ = 300) following Durek and Ekström (1996). Co-
efficients for cubic B-splines in the upper mantle are set to zero in the
starting model and linear parameters are set to a constant value that
corresponds roughly to the average estimate from PREM. The shear and
compressional velocities in the lower mantle (650–2891 km depth) are
made compatible with SP6 to allow faster convergence to summary
arrival-time curves (Section 2.4). The starting density model in the
central lower mantle (771–3891 km depth) and Dʹ́ region closely re-
sembles PREM, which was derived using a variation of the method
proposed by Birch (1964).

Applying the condition that inner and outer cores are at hydrostatic
equilibrium and follow the Adams-Williamson equation, density at the
top of outer core

(
ρtopOCO

)
is reduced from 9.90349 g/cm3 in PREM to

9.89526 g/cm3 (Fig. 13). The ρtopOCO parameter is optimized to fit the
astronomic-geodetic data (Table 1) using the downhill simplex method
(e.g. Nelder and Mead, 1965). Since radial modes provide sensitivity to
bulk attenuation based on the expansion and contraction of the Earth,
we incorporate constraints from Durek and Ekström (1996) to achieve
faster convergence in fits. For the starting model, a fixed and finite bulk
attenuation (Qκ = 28,000) is adopted in the mantle while no bulk
attenuation is prescribed elsewhere (Qκ = 88,888 denoting infinity
within numerical precision). This choice gives significantly better data
fits (up to 6 times lower χ2/N) and faster convergence for quality factors
and eigenfrequencies of radial modes (Section 2.2) without deterio-
rating substantially the fit to other datasets.

Fig. 9. Crustal phase velocity perturbations (dc/c) for Love and Rayleigh waves at 35 and 60 s. Local eigenfrequencies and phase velocities are calculated from PREM
overlain by crustal structure CRUST2.0 (Bassin et al., 2000). Average values at each period, as specified in < ⋅ >, has been used to construct the dispersion curve in
Fig. 10 (solid curves).
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4.2.2. Starting constraints on the discontinuities
Several discontinuities in the Earth are modified to account for the

recent literature on the mean depths and contrasts in physical parame-
ters across boundaries. Velocity and density contrasts in the transition-
zone discontinuities of our starting model are adjusted to fit best esti-
mates from global studies of long-period seismograms (Section 2.5,
Table 3). Contrasts in the starting model are identical to PREM at the
410-km discontinuity (%ΔvS = 3.4, %ΔvP = 2.5, %Δρ = 5) and similar to
AK135 at the 650-km discontinuity (%ΔvS = 6.1, %Δρ = 5.3) albeit with
a slightly reduced contrast for compressional waves (%ΔvP = 2.5, %ΔZP
= 7.8). Radius of the inner core is reduced by 6 km from PREM to 1215

km based on PKIKP travel times from body-wave studies (e.g. Morelli
and Dziewonski, 1993). Our choice of an inner core radius is broadly
consistent with several other body-wave (Kennett et al., 1995; Dzie-
woński et al., 1975; Souriau and Souriau, 1989) and normal-mode
studies (e.g. de Wit et al., 2014). At the inner-core boundary, shear-
velocity contrasts in our starting model (Table 3) are obtained from
SP6 (ΔvS = 3.5 km/s) and density contrasts from PREM (Δρ = 0.6 g/
cm3), values broadly consistent (±2σ) with recent normal-mode (e.g.
Masters and Gubbins, 2003) and body-wave studies (e.g. Koper and
Dombrovskaya, 2005).

4.2.3. Starting constraints on gradients in the core
A reasonable a priori expectation is that the outer core is well mixed

and is composed of iron and lighter alloying components (e.g. Birch,
1964; Bloxham and Jackson, 1991). While adopting higher-order poly-
nomials for density can help prevent artifacts in the Bullen’s stratifica-
tion parameter (Section 4.1), it does not alleviate concerns regarding the
gradient of bulk modulus with pressure (κʹ = dκ/dp). While average
values of the derivative parameter κʹ in PREM are largely valid, its
curvature (κʹ́ = d2κ/dp2) undergoes a reversal in sign within the outer

Fig. 10. Global averages of perturbations in phase-velocity (δc/c, a) and
attenuation

(
1000⋅δQ− 1, b) for Love (in blue) and Rayleigh waves (in yellow)

between 4 and 40 mHz. Reference data and uncertainties from Section 2 are
plotted as dots with error bars while non-linear (or linear) crustal contributions
are provided as solid (or dot-dashed) curves. Average non-linear crustal per-
turbations (solid curves) are obtained from phase velocity and attenuation maps
derived using PREM overlain by CRUST2.0 (Fig. 9, eq. 14) or CRUST1.0
(dashed curves). All calculations assume a constant shear attenuation in the
crust (Qμ = 300). The crystalline crust in CRUST1.0 is expanded everywhere to
match the average thickness in PREM (21.4 km). Linear contributions from the
crust are only sensitive to differences between average structure of CRUST2.0
and PREM (dot dashed, a). Non-linear contributions are comparable to or
exceed the uncertainty in phase-velocity measurements, in contrast to the
quality factors where the uncertainties are much larger (b). All perturbations
reported here are calculated relative to values obtained from PREM. A zoomed-
in version of this figure for frequencies up to 15 mHz is provided as Supple-
mentary Fig. S21.

Fig. 11. Non-linear crustal corrections to the eigenfrequencies of fundamental
spheroidal and toroidal modes. Non-linear contributions from CRUST2.0 (solid
colored curves) and CRUST1.0 (dashed colored curves) are obtained using eq.
13 and are similar. The corresponding data after crustal corrections (black) are
indicative of the modifications needed to the mantle structure in PREM. Dashed
vertical lines denote the limits of local-eigenfrequency approximation (Fig. 7).
These are the threshold angular orders above which the waves are of a suffi-
ciently short wavelength that non-linear crustal corrections can be applied (i.e.
0Sl>38, 0Tl>76). All perturbations reported here are calculated relative to values
obtained from PREM.
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core (Fig. 13d). Based on EoS predictions of a well-mixed isochemical
outer core (e.g. Stacey, 2005), the curvature κʹ́ should remain negative
over an entire pressure range, decreasing in magnitude to zero at high
pressures (p→∞). We remove this anomalous κʹ́ feature of PREM from
our starting model START by damping the third derivative (Rt) of ρ and
vP variations (Appendix A, Table A.1). Velocities in the inner core are
also modified from SP6 in order to give expected variations in κʹ́ while
satisfying the arrival time dataset of core-sensitive body waves (e.g.
PKKP, PKIKP, PʹPʹ) to within ~0.3 s (Section 2.4, Table 2). Applying this
κʹ́ constraint in the core does not change the fits to most subsets of the
reference dataset; only the χ2 fits to the eigenfrequencies of radial modes
deteriorate by a factor greater than 1.2, which is not statistically sig-
nificant for the number of effective parameters in our inversions (e.g.
Hastie and Tibshirani, 1990).

4.3. Regularization and model complexity

We relate reference datasets d to the model vector m containing
perturbations to our starting model using linearized sensitivity kernels
(Gm = d) based on the formulations in Section 2. Due to imperfect data
coverage and measurement errors, and in order to stabilize the inver-
sion, we regularize the inversions by minimizing data misfit and specific
characteristics of the radial model. Overall objective of our inversions is
to minimize the quantity

χ̃2 = χ2+ γgR2g + γcR2c + γtR2t + γnR2n + γdR2d + γsR2s , (23)

where χ2, γg, γc, γt and γn are the total data misfit, and weights to

modulate the gradients, curvature, third-order derivatives and norm,
respectively (Appendix A). The weight γd helps modulate the step
change in density and velocity (i.e. contrast in %) across first-order
discontinuities, such as in the transition zone (410 and 650 km) and
the inner core boundary, to closely match the reference dataset
(Table 3). This term is also used to impose a second-order discontinuity
such as at the depth of 771 km in the lower mantle (Section 4.1). In order
to modulate model perturbations in the uppermost mantle where more
structural detail can be recovered, additional depth-dependent weights
(W) for gradient and norm damping are used in four distinct regions
(24.4–80, 80–250, 250–330, 330–410 km). For all parameters, gradients
and norm of perturbations are damped strongly in the deepest region of
the upper mantle (330–410 km) since data sensitivities deteriorate and
no additional data variance can be explained with more structural
complexity. A complete list of damping parameters used in REM1D
construction (Paper II) is provided in Table A.1 and discussed in
Appendix A.

We perform standard damped least-squares inversions and select an
appropriate amount of damping for every principal region in the Earth.
The optimal damping scheme is adjusted separately for different phys-
ical parameters after successive trials and evaluation of our results.
Several persistent features emerge that are largely independent of the
choices on damping. For example, shear attenuation in the upper mantle
is the strongest (low Qμ) at depths between 150 and 175 km irrespective
of the amount of gradient damping employed in this region (Fig. 15d). It
is worth noting that the lowest damping weights (γg = 10, 50) lead to
very oscillatory models with depth and contain spurious features such as
a Qμ discontinuity at 410 km that is not substantiated by a L-curve

Fig. 12. Impact of parameterization on the derivative properties sensitive to spin transitions in the lower mantle. (a) Shear modulus (μ) and pressure (p) are both
scaled by the bulk modulus (κ) calculated from PREM and the body-wave model AK135. (b) Trends between the two parameters are removed with a polynomial of
the form μ/κ = c - m⋅p/κ; the polynomial terms for each radial model are provided in the legend. Polynomial coefficients of vS and vP variations in the central lower
mantle of PREM are adjusted to give trends in the modulus ratio (μ/κ) similar to AK135 using the downhill simplex method (e.g. Nelder and Mead, 1965). (c,d) Minor
changes are needed to the PREM velocity structure (reduction of ~1.5–2 % in vS, ~1.2 % in vP) in order to fit AK135 profiles of derivative properties (dashed black
curves in a,b). A slight change in the gradient of μ/κ in the central lower mantle of AK135 has been interpreted as a signature of spin transitions in iron-bearing
minerals by Kennett (2021). We demonstrate that a parsimonious cubic polynomial parameterization in velocity structure is adequate to capture this feature of
AK135 and parameterization in terms of several linear gradients is not required. Feasibility for the detection of spin transitions based on reference datasets is
discussed further in Section 4.4 of Paper II.
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analysis (e.g. Hansen, 2006, Fig. 15c). Robust models with less-
oscillatory behavior afford improved fits to quality factor data and do
not require a large step change (ΔQμ ≥ 30) at the 410-km discontinuity.

We follow an iterative inversion scheme where the sensitivity
matrices G are re-calculated for several iterations until convergence is
achieved for all datasets. Recalculation of the sensitivity kernels ac-
counts for the strongly non-linear and substantial effects of even slight
deviations (≤0.5 %) of physical parameters on the eigenfunctions and
eigenfrequencies of normal modes. This approach is in contrast to
several studies where fixed sensitivity kernels from the starting model
were used to guide the search for an optimal solution (e.g. Durek and
Ekström, 1996; Dalton et al., 2008). We demonstrate the utility of this
iterative approach in derivations of radial attenuation structure using
two experiments. First, we use a computationally expensive non-linear
optimization algorithm (e.g. Nelder and Mead, 1965) to show that a
second iteration in relatively simple inversions of radial shear attenua-
tion

(
Qμ
)
improve the χ2 fits (Fig. 15a,b) by ~30 %; more iterations (at

least 3–5) are usually needed to reach convergence in full (an)elastic and
density inversions. Improvements in data fits from iterations are due to
the changes in Qμ of ~5–10 %, which are comparable to the signal in
lateral variations of attenuation (e.g. Selby and Woodhouse, 2002;
Dalton et al., 2008). Large deviations in shear attenuation can sub-
stantially alter the mode eigenfrequencies and displacement eigen-
functions, especially for vibrations at longer periods (T ≫ 1 s) that sense
a more pronounced and mechanically weak low-velocity zone in the
uppermost mantle due to physical dispersion (cf. Fig. 11 in Paper II).
Second, we test for convergence with synthetic data calculated from
PREM+QL6 (elastic PREM with anelastic QL6 structure) that also

justifies the need for iterative inversions. PREM+QL6 was perturbed in
various regions (ΔQμ = 10–50) for use as the starting model in in-
versions for Qμ structure. Even in the absence of noise, the perturbed
models only converge back (∣ΔQμ∣ < 5) to PREM+QL6 when starting
perturbations were less than ΔQμ = 20. This is indicative of the strong
non-linear dependence on the starting model, especially in the mantle
lithosphere (24.4–80 km) and inner core where available quality-factor
data afford weaker constraints.

4.4. Analytical versus numerical approaches

Classical radial models (e.g. Dziewoński and Anderson, 1981; Durek
and Ekström, 1996) have typically been constructed with non-linear
optimization algorithms like the downhill simplex method (e.g. Nelder
and Mead, 1965) and sensitivity kernels computed numerically by per-
turbing the physical parameters in a starting model. Every physical
parameter (e.g. density ρ) is perturbed in turn by an ad-hoc amount of
each basis function (< ⋅ > in Fig. 5); data predictions from the starting
and perturbed models are then subtracted to get the sensitivity matrix (i.
e. G) employed in standard optimization routines (e.g. Press et al.,
1992). Numerical approaches are easier to implement as theoretical
complexities like attenuation and physical dispersion are automatically
accounted for in the forward calculations. For example, normal modes in
a 1D Earth model account for physical dispersion by solving the radial
scalar equations for the eigenfrequency and displacement eigenfunc-
tions using dispersed elastic parameters relevant to every normal mode
(Woodhouse, 1988; Masters et al., 2011). However, numerical ap-
proaches become computationally infeasible when a large set of

Fig. 13. Impact of parameterization and regularization on the derivative properties of the outer core. If density and its gradients follow the Adams-Williamson
equation (dρ/dr = − ρ2g/κ) with a prescribed value at the top of the outer core (ρtopOCO = 9.90349 g/cm3 in PREM), such variations can only be captured with
high-order polynomials (Section 4.1). (a) Estimates of the Bullen’s stratification parameter ηB after the density variations derived from the SP6 and PREM elastic
structure have been re-parameterized in terms of polynomials up to orders 3, 4 and 5. Polynomials of order 4 or higher are needed to avoid artifacts (∣ηB − 1∣ >

0.005) that lead to spurious interpretations of inhomogeneity or non-adiabicity in the outer core. (b-c) Differences in the density and gravity (g) variations between
the re-parameterized model and PREM; large deviations are removed in our starting model (START) by reducing ρtopOCO to 9.89526 g/cm

3 (Section 4.2). (d) Derivative
property of the gradient in adiabatic bulk modulus with pressure (κʹ = dκ/dp) is reported for PREM, SP6 and START. Reparametrizing the density structure in terms of
polynomials of various orders does not change the κʹ trends. A positive curvature (κʹ́ = d2κ/d2p) in earlier models is incompatible with expectations of a well-mixed
outer core of uniform composition. START removes this anomalous feature by damping the third derivative (Rt) of ρ and vP variations in the outer core
(Appendix A, Table A.1).
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moderate- to high-frequency normal modes (T < 150 s) are analyzed or
when the Earth model is expressed in terms of a large set of basis
functions. Since non-linear optimization techniques require an iterative
scheme to reach convergence, especially in the absence of a good
starting model, repeated calculations of Gmatrices quickly becomes the
rate-limiting step in such inversion schemes.

We develop an analytical approach of calculating the sensitivity
matrices based on first-order perturbation theory (Section 2), which
utilizes the local-eigenfrequency approximation to model the normal-
mode eigenfrequencies and quality factors in terms of degree-0 pertur-
bations to a starting model (e.g. eqs. 15 and 16). The analytical sensi-
tivity kernels are benchmarked against classical numerical schemes that
repeatedly perturb a single parameter in a region using two approaches.
First, normal modes in the perturbed radial models for each parameter
(Fig. 5) were compared against those predicted by analytical kernels
accounting for physical dispersion. Differences in eigenfrequencies and
quality factors between the original and perturbed models arising from
structural perturbations should ideally be captured by eqs. 5 and 6
within the limits of first-order perturbation theory. Our experiments
suggest that both formulations predict estimates that are similar to
within 0.1–1 ppm, substantially lower than the relative uncertainties in
available data (Section 2.6). It is worth noting that these linearity limits
are only valid for small perturbations (~1–5 times the < ⋅ > values in
Fig. 5) and are voided more easily for certain basis functions (e.g. vS
splines in the upper mantle). These basis functions correspond to regions
with the strongest displacements in the eigenfunctions of surface-wave
equivalent normal modes and their associated structural sensitivities.
Numerical kernels used widely in seismological studies are strictly valid
within these limits of linear perturbation theory and our analytical
kernels can reach the same level of precision. Second, inversions for
shear attenuation were carried out using analytical kernels and bench-
marked against inversions using numerical kernels for a fixed parame-
terization (Fig. 16). General trends in shear attenuation are consistent
between the two formulations with peak attenuation (Qμ ∼ 80) at depths
below 150 km. Both tests confirm that the use of an analytical formu-
lation is robust for small perturbations from starting models and

recalculating sensitivity kernels in an iterative scheme gives similar in-
ferences on bulk Earth structure.

Accounting for physical dispersion (e.g. eq. 16) is critical when
dealing with the non-linearities in modeling both eigenfrequencies and
quality factors of normal modes. Inverting solely for mantle shear
attenuation

(
Qμ
)
leads to models that fit the quality factor dataset

significantly better than other radial models while fits to eigen-
frequencies deteriorate. This procedure of fixing the elastic and density
structure in Qμ inversions is analogous to what was adopted by Durek
and Ekström (1996) during the construction of attenuation model QL6;
similar tradeoffs are also seen therein where fits to quality factor data
improve at the expense of eigenfrequencies (Fig. 16). Fits to eigen-
frequencies deteriorate by a factor of ~1.5–3 for various subsets of
modes, which is significant at the 95 % confidence level for the number
of parameters in these inversions. Our experiments with eigen-
frequencies reveal that not accounting for the dispersion term (e.g. eq.
16) leads to slower convergence towards a joint solution of radial (an)
elastic structure. Tradeoffs across elastic, density and anelastic varia-
tions are therefore harder to disentangle without joint inversions and an
explicit dispersion correction.

5. Conclusions and outlook

Main results of this study are reference bulk Earth datasets and new
modeling concepts that can be used to infer unbiased average properties
of the heterogeneous interior. The reference dataset comprises normal-
mode eigenfrequencies and quality factors, surface-wave dispersion
curves, impedance constraints and travel-time curves from body waves,
and astronomic-geodetic observations. This reference dataset represents
better geographic coverage, wider variety of techniques and broader
frequency range (~0.3 mHz – 1 Hz, ~1–3200 s) than those used in the
construction of earlier radial reference models. Our best estimates lie
within the 95 % confidence interval of most individual studies and
relative uncertainties are reduced by more than half from PREM,
demonstrating the improved consistency across measurement

Fig. 14. Starting model (START) used in the inversions. The model perturbations consist of combinations of 7 evenly-spaced cubic B-splines between 24.4 and 410
km and polynomials up to order 4 elsewhere (Fig. 5, Appendix A). A layered parameterization with boxcar functions is used for bulk attenuation (Qκ) in various
regions of the mantle and core. PREM+QL6 denotes that the elastic and density variations are from PREM while attenuation is from QL6. Core structure in START is
modified from PREM based on SP6 and other constraints (Section 4.2).
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techniques. Geographic bias towards structure sampled by continental
stations is evident in earlier studies that systematically underpredict the
phase velocities of Rayleigh waves (e.g. PREM) and arrival times of
diffracted Sdiff waves (e.g. AK135). In order to accurately describe the
spherical average of Earth’s 3D heterogeneity (degree-0 term in spher-
ical harmonics), we account for geographic bias in body-wave and
surface-wave arrival times and reconcile normal-mode observations.
The new reference dataset is indicative of a peak anisotropy in the upper
mantle, reduced velocities in the lowermost mantle, and strong gradi-
ents in the outermost outer core. Reference datasets can be used for the
calibration and interpretation of Earth’s bulk constituents as estimated
by mineralogical models and dynamical simulations.

Due to the theoretical limitations arising from lateral heterogeneity,
reference bulk Earth datasets cannot be interpreted directly in terms of
radial structure. Most theoretical formalisms of traveling (surface and
body) waves utilize the local-eigenfrequency approximation, which is
valid only when horizontal wavelengths of structural heterogeneity (s)
are much greater (s≪l) than that of the equivalent normal modes (nSl,
nTl). A local threshold parameter ϰthres is introduced to assess the un-
accounted for volumetric effects of heterogeneity in this approximation.
Recent estimates of crustal (CRUST2.0) and mantle heterogeneity
(S362ANI+M) limit the validity of the local-eigenfrequency approxi-
mation to short periods for both Love waves (toroidal fundamental, T <

120 s) and Rayleigh waves (spheroidal fundamental, T < 220 s). The
adoption of JWKB theory and ray approximation to attribute the prop-
agation phase to interior structure may not be justified for long-period
surface-waves. This limitation stems from a more fundamental aspect
of wave propagation in complex heterogeneous media than other com-
plications such as finite-frequency (e.g. Wang and Dahlen, 1994) or off-
great-circle propagation effects (e.g. Woodhouse and Wong, 1986),
which actually utilize rather than circumvent the local-eigenfrequency
approximation.

Our assessment regarding the validity of local-eigenfrequency

approximation for constructing radial reference models is based on a
single set of three-dimensional models. Both CRUST2.0 and S362ANI+M
constrain long-wavelength heterogeneity (nominal resolution ≥

200–1500 km, degree~18 in the mantle) and impose vP-vS and ρ-vS
scaling a priori in their construction. Recent studies have reported het-
erogeneity with increasingly finer resolution (e.g. Ritsema et al., 2011;
Laske et al., 2013; French and Romanowicz, 2014) and scaling
complexity (e.g. Moulik and Ekström, 2016), which can modify some-
what our inferences on the local-eigenfrequency approximation. Stron-
ger power than S362ANI+M, especially at the shorter wavelengths in
recent studies (e.g. Lebedev and van der Hilst, 2008; French and
Romanowicz, 2014), could shift the local threshold (ϰthres) to higher
frequencies and angular orders, severely limiting the applicability of
theoretical formulations employed in such inversions (e.g. Nolet, 1990;
Li and Tanimoto, 1993). Our estimates of local thresholds only account
for the effects of even-degree variations on isolated normal modes;
stronger power at odd degrees and shorter wavelengths could also shift
the limitation to higher frequencies. Validity limits could also depend on
the structural (in)homogeneities that traveling waves encounter along
the ray path (e.g. ocean-continent transition) due to the strong coupling
between normal modes (e.g. Park, 1986). Applicability of the local-
eigenfrequency approximation needs to assessed rigorously during the
forward and inverse modeling of traveling waves. Caution is warranted
before interpreting the strong amplitudes of finer-scale 3D variations in
recent tomographic studies.

A strongly heterogeneous crust can influence the features and in-
terpretations of radial reference Earth models. Even within the validity
limits of the local-eigenfrequency approximation, several reference bulk
Earth datasets cannot be modeled linearly in terms of radial structure.
Lateral variations in the crust can change the shape of mode eigen-
functions and local eigenfrequencies in a significantly non-linear
fashion. In case of the quality factors of normal modes, non-linear
contributions from a crust with uniform shear attenuation (Qμ = 300)

Fig. 15. Influence of iterations (a-b) and damping (c-d) on the inversions for radial structure. Quality factors of some radial, spheroidal and toroidal modes are
employed in the iterative inversions for shear attenuation (Qμ). The iterations involve recalculating the sensitivity kernels to account for the strongly non-linear
effects of even slight deviations in radial structure on the eigenfunctions and eigenfrequencies of normal modes. Various amounts of gradient damping in the
upper mantle (c) result in similar models with a peak in shear attenuation (low Qμ) between 150 and 180 km depth (d). Note that the lowest damping weights (γg =
10,50) lead to very oscillatory models with features such as a discontinuity at 410 km that is not substantiated by the L-curve analysis (e.g. Hansen, 2006). These
inversions either employ START1D (Fig. 14) or PREM with a modified mantle lithosphere (24.4–80 km, Qμ= 300) as the starting model.
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are statistically insignificant due to the large scatter in available mea-
surements. Crustal contributions to observed phase-velocity variations
are statistically significant and comparable in magnitude (> 50%) to the
observations of both short-period Love (≤40 s) and intermediate-period
Rayleigh waves (50–100 s). Therefore, non-linear contributions from the
crust can have a perceptible and often dramatic effects on the inferences
of radial elastic and density structure. While linear assumptions might
imply that high velocities for short-period Love waves are indicative of a
thin crust (Ekström, 2011), non-linear crustal contributions can explain
most of the signal suggesting that no major changes to the Moho depth
are required. Lateral variations cannot be averaged out linearly when
interpreting the global Love-Rayleigh discrepancy of phase velocities in
terms of radial structure, as was assumed in previous theoretical (e.g.
Anderson and Dziewoński, 1982) and modeling studies (e.g. PREM).

We extend full spectrum tomography (FST) to account for the
intertwined theoretical (e.g. non-linearities) and observational (e.g.
geographic bias) effects of lateral heterogeneity on the inferences of bulk
Earth structure. Due to the strong non-linearities inherent in joint in-
versions for density and (an)elastic structure, we formulate analytical
sensitivity kernels that account explicitly for anelastic dispersion and are
re-computed at every iteration. Our new inversion scheme for radial
models is benchmarked against classical approaches that employ
computationally intensive numerical kernels and non-linear optimiza-
tion schemes. Rapid convergence towards an optimal solution is facili-
tated with analytical basis functions and a revised starting model. Our
parsimonious parameterization, comprising polynomials up to order 4
and cubic B-splines, is dictated by the improved data coverage and
avoids interpretative assumptions on EoS formulations and mineralog-
ical parameters. If the order of polynomial for density is greater than
that of the elastic structure, artifacts in the Bullen’s stratification
parameter (ηB) that wrongly imply inhomogeneity and non-adiabaticity
can be prevented in potentially well-mixed regions like the outer core.
Other derivative properties like the gradient of bulk modulus with

pressure (κʹ) in the core are adjusted to match expectations from mineral
physics without deteriorating the fits to reference datasets. A cubic
polynomial parameterization in the lower mantle is consistent with
mineralogical expectations and is able to capture possible changes in the
gradient of modulus ratio (μ/κ) associated with spin transitions in iron-
bearing minerals. Modeling concepts introduced here provide a way to
infer the average properties of a heterogeneous Earth, crucial for the
geological interpretations based on the radial (1D) reference model
(REM1D, Paper II) and the related construction of the 3D reference Earth
model (REM3D).
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Appendix A. Regularization schemes

Our modular parameterization allows evaluation of isolated features in the Earth using various types of damping or regularization as a priori
information. All damping schemes (Section 4.3) can be expressed as a general matrix formulation D

(
m + δabsm0

)
= c, wherem0 is the starting model,

c is a constant, and δabs dictates whether absolute properties (i.e. m0 + m, δabs=1) rather than the perturbations (i.e. m, δabs=0) are regularized.
Following discrete inverse theory (e.g. Menke, 1989), solution to our regularized inverse problem is

mLS =

[
∑

i
wi
(
GTG

)

i +
∑

j
γj
(
DTD

)

j

]− 1[
∑

i
wi
(
GTd

)

i −
∑

j
γj
(
δabs⋅DTDm0 − DTc

)

j

]

, (A.1)

wheremLS is a matrix containing the best-fitting model while wi are weights given to various types of reference datasets. Here, γj are the weights given
to different regularization choices (eq. 23) and

(
DTD

)

j are the respective damping matrices derived numerically based on the formulations below.
Table A.1 lists the damping choices employed during the construction of the new radial reference Earth model REM1D (Paper II).

Perturbations to our starting model (⊕0, eq. 22) are expressed in terms of two types of piecewise-continuous, analytical functions in different
principal regions (Fig. 5). The first type comprises polynomials up to the fourth order (n = 4) i.e. values at the top (Bt(r) = (r − rb)/(rt − rb) ) and
bottom (Bb = (rt − r)/(rt − rb) ) of a region, as well as the quadratic (Bx2 ), cubic (Bx3 ) and quartic polynomials terms (Bx4 ). These basis functions can be
expressed as

Bxn (r) =

( (
rn − rnt

)
− (r − rt)*

∑n− 1

k=0

(
rn− 1− kb *rkt

)
if rb ≤ r ≤ rt

0 otherwise,
(A.2)

where rt and rb correspond to the top and bottom radius of a region, respectively. Our parameterization in the uppermost mantle also includes
piecewise-continuous cubic B-splines (Lancaster and Salkauskas, 1986) that result in smooth variations across the 220-km discontinuity. We adopt the
7 interior cubic B-splines (si, i=1–7) from a set defined across 9 (N+ 1) knots spaced evenly (h= ri+1-ri = 48.2 km) between the depths of 24.4 km (rN =

6346.6 km) and 410 km (r0 = 5961 km).

Bs1 (r) =
2
3
×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
1
2
h− 3(r − r0)3 +

3
2
h− 1(r − r0) if r0 ≤ r ≤ r1

3
4
h− 3(r − r1)3 −

6
4
h− 2(r − r1)2 + 1 if r1 ≤ r ≤ r2

−
1
4
h− 3(r − r2)3 +

3
4
h− 2(r − r2)2 −

3
4
h− 1(r − r2) +

1
4

if r2 ≤ r ≤ r3

0 if r3 ≤ r ≤ rN,

(A.3)

Bsi (r) =
2
3
×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 if r0 ≤ r ≤ ri− 2
1
4
h− 3(r − ri− 2)3 if ri− 2 ≤ r ≤ ri− 1

−
3
4
h− 3(r − ri− 1)3 +

3
4
h− 2(r − ri− 1)2 +

3
4
h− 1(r − ri− 1) +

1
4

if ri− 1 ≤ r ≤ ri

3
4
h− 3(r − ri)3 −

6
4
h− 2(r − ri)2 + 1 if ri ≤ r ≤ ri+1

−
1
4
h− 3(r − ri+1)3 +

3
4
h− 2(r − ri+1)2 −

3
4
h− 1(r − ri+1) +

1
4

if ri+1 ≤ r ≤ ri+2

0 if ri+2 ≤ r ≤ rN,

(A.4)

BsN− 1 (r) =
2
3
×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 if r0 ≤ r ≤ rN− 3
1
4
h− 3(r − rN− 3)3 if rN− 3 ≤ r ≤ rN− 2

−
3
4
h− 3(r − rN− 2)3 +

3
4
h− 2(r − rN− 2)2 +

3
4
h− 1(r − rN− 2) +

1
4

if rN− 2 ≤ r ≤ rN− 1

1
2
h− 3(r − rN− 1)3 −

3
2
h− 2(r − rN− 1)2 + 1 if rN− 1 ≤ r ≤ rN

(A.5)

While curvature at the boundary knots (i = 0,N) are adjusted to be zero in this basis set to ensure uniqueness (e.g. Michelini and McEvilly, 1991),
we exclude the two boundary cubic B-splines (s0, sN) from our parameterization since the edge variations are captured by the other polynomial
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functions Bb and Bt (Fig. 5). Radial derivatives such as gradients (Bʹ = ∂B/∂r), curvature (Bʹ́ ), and third derivatives (Bʹ́ʹ) can be readily calculated and
employed in various regularization schemes (eq. 23) outlined below. All radius and derivative terms discussed in this section (e.g. eqs. A.2–A.5) are
normalized by the mean radius of the solid Earth (i.e. r = 1 at R = 6371 km).

(i) Step changes at discontinuities (Rd): In order to impose x% contrast in a physical property (mk) between two adjoining principal regions (p1,
p2), the general expression is

Rd(mk, p1, p2) =
[
(S − x/100*A)Tm

]1/2
= 0

m =
[
cmkp1 ,b, c

mk
p2 ,t

]
S = [ − 1, 1] A = [1/2,1/2]

D = S − x
/
100*A δabs = 1 c = 0

(A.6)

where m contains values at the top of an underlying region (cp2 ,t) and at the bottom of an overlying region (cp1 ,b) in the starting model, respectively.
This type of damping incorporates information from reference datasets (Table 3) and is strongly imposed where there is limited or no evidence of a
pervasive first-order discontinuity with a step change in properties (e.g. x = 0 % at 771 km depth).

(ii) Gradients of the perturbations or inverted model (Rg): The smoothness of radial variations within a region can be quantified based on its
gradients (mʹ). We impose smooth perturbations for all physical parameters following

Rg
(
mk, rbot , rtop

)
=

⎡

⎢
⎣
∑

h
δcmkh

∫rtop

rbot

W2( Bʹ
h⋅B

ʹ
h
)
(r) dr

⎤

⎥
⎦

1/2

= 0

D =
[
W(r)Bʹ

1(r) , ..…,W(r)Bʹ
h(r)

]
δabs = 0 c = 0

(A.7)

where the integral is performed over the range of radii within the region,D contains rows for evenly-spaced concentric shells centered at radius r,W is
a depth-dependent weighting function, and δcmkh is the perturbation to basis coefficient (eq. 22). The weighting function is only relevant for variations
in the upper mantle and are adjusted separately for three depth ranges - 24.4–80, 80–250, 250–330 and 330–410 km. Our choice of a depth-dependent
damping scheme is informed by the non-uniform sensitivity of reference datasets to the strongly varying structure in the upper mantle. Quality factors
of Rayleigh waves, for example, are less sensitive to the Qμ variations between 330 and 410 km; we apply up to 10 times stronger damping than the
uppermost mantle to disfavor strong Qμ gradients at these depths. Gradients of physical parameters at the Earth’s center (r = 0) are expected to
converge towards zero. This constraint on the absolute properties of the inverted model can be expressed in its matrix form as

D =
[
Bʹ
1(0) , ..…,Bʹ

h(0)
]

δabs = 1 c = 0. (A.8)

(iii) Higher-order derivatives of the inverted model (Rc, Rt): Curvature of the model (mʹ́ ) can often dictate the smoothness in thin regions with
strong linear gradients. For example, quadratic and cubic terms of vP and vS structure in the upper lower mantle (ULM; 650–771 km depth) and
Dʹ́ (2741–2891 km depth) regions need to suppressed due to weaker data constraints. Moreover, third derivatives of the inverted model (mʹ́ʹ)
can influence interpretations in mineral physics and global geodynamics, especially in regions where homogeneity and adiabicity may be
expected such as the fluid outer core (Section 4.1.4, Fig. 13). The general expression for damping the curvature of k-th model parameter in a
region is

Rc
(
mk, rbot , rtop

)
=

⎡

⎢
⎣
∑

h
δcmkh

∫rtop

rbot

W2( Bʹ́
h⋅B

ʹ́
h
)
(r) dr

⎤

⎥
⎦

1/2

= 0

D =
[
W(r)⋅Bʹ́

1(r) , ..…,W(r)⋅Bʹ́
h(r)

]
δabs = 1 c = 0

(A.9)

Similar expressions for the third derivatives of a parameter (Rt) along with depth varying weights can be readily employed in our inversions.

(iv) Norm of the perturbations or inverted model (Rn): Strong model complexity in certain features of the Earth cannot be justified based on the
fits to reference datasets. We apply norm damping on model perturbations in these situations as our starting model represents a priori infor-
mation on physically plausible structure (Section 4.2). This constraint is applied in the inner core, for example, where limited sensitivity of the
datasets in this study disfavor substantial deviations from the shear attenuation in our starting model. This regularization term can be expressed
as

Rn
(
mk, rbot , rtop

)
=

⎡

⎢
⎣
∑

h

δcmkh
∫rtop

rbot

W2(Bh⋅Bh)(r) dr

⎤

⎥
⎦

1/2

= 0

D = [W(r)B1(r) , ..…,W(r)Bh(r) ] δabs = 0 c = 0

(A.10)

where the integral is defined from the top of the inner core to the center of the Earth. In other situations, norm of absolute properties (δabs = 1) may
need to be suppressed instead based on data fit and mineralogical considerations. For example, both aS and aP anisotropy in the depth range of
250–410 km are suppressed without deteriorating the fits to surface-wave dispersion data (Table A.1).
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(v) Scaling between physical parameters (Rs): The correlation and scaling relationships between two physical parameters (ma, mb) may be
expected based on petrological and other geophysical constraints. This regularization term can be expressed as

Rs
(
ma,mb, rbot , rtop

)
=

⎡

⎢
⎣
∑

h

[(
cmah + δcmah

)
− ν⋅

(
cmbh + δcmbh

) ]
∫rtop

rbot

W2(Bh⋅Bh)(r) dr

⎤

⎥
⎦

1/2

= 0

Da =
[
W(r)Ba1(r) , ..…,W(r)Bah(r)

]

Db =
[
− νW(r)Bb1(r) , ..…, − νW(r)Bbh(r)

]

D =
[
Da,Db

]
δabs = 1 c = 0

(A.11)

where the ν is a scaling factor between the absolute values of the two parameters. In Paper II, this damping term is used for evaluating anisotropic
variations in the mantle lithosphere (24.4–80 km depth) but is ultimately excluded during REM1D construction.

Table A.1
Regularization adopted during REM1D construction in Paper II. The terms below modulate the norm (γn), curvature (γc) and third order derivatives (γt) following eqs.
23 and Appendix A. When a superscript “*” is noted, absolute properties of the updated model is being regularized (δabs = 1) in lieu of perturbations to the starting
model (δabs = 0). Additional terms not listed belowmodulate the step changes (in %) across discontinuities (γd) and gradients of model perturbations (γg) for all physical
parameters.

Region Depth (km) ρ vP vS aP aS η

Upper mantle 24.4–80 – γn – – – –
[UUM] 80–250 – – – – – –

250–330 γn γn – γ*n γ*n γn
330–410 γn γn – γ*n γ*n γn

Outer core [OCO] 2891–5156 γ*t γ*t – – – –
Inner core [ICO] 5156–6371 γ*c γ*c – – – –
Center [CoE] 6371 γ*g γ*g γ*g – – –

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pepi.2025.107319.

Data availability

The reference dataset, REM1D model (see Paper II for features and
interpretations), and codes to evaluate physical parameters at arbitrary
locations are available from the project webpage (http://rem3d.org)
and are permanently archived on Zenodo (https://doi.
org/10.5281/zenodo.8407693).
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